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considered. Both analytical and numcrical approaches were employed. A fundamental conclusion reached is
that relatively large aerodynamic force changes can be obtained with relatively small rates of gas injection.

Analytical work concentrated on providing, for a simple flow field with gas injection, solutions from
which the results of changes in parameters could be ascertained and which would provide example test cases for
the numerical codes. The case considered is one for which the shear layer, which lies between the shock layer
and the blown gas layer, has a thickness of the same order of magnitude as the other layers. Similarity solutions
for a specific form of distributed gas injection were derived and used to provide pressure distributions; changes
in force due to blowing and the dependence of these forces on various parameters were illustrated. Special
methods necessary to compute the shear layer solutions were developed. An indication of the effects to be
expected due to chemical reactions was found by consideration of oxygen dissociation with chemical *
equilibrium.

In the numerical studies, two different codes were developed. In the first, an inviscid flow field was
considered, and problems associated with a crisp reproduction of the shock wave in hypersonic flow and the
accurate representation of the desired blowing velocity at the body surface were considered. In the absence of
experimental data, the code was validated by comparing results with available analytical results. It is valid for
those cases where the boundary layer is blown off and is very thin compared to the shock layer and blown gas
layer. A Navier-Stokes code was also developed. Solutions for a boundary layer on a flat plate and for a non-
separated flow in a compression comer compared well with those found by others. Solutions attempted for a
parameter set for which analytical results are known were unstable; i.e. a shear layer instability resulted. There
is a possibility that this is a physical instability. Consideration of a very hot blown gas allowed stable solutions
to be found, but they did not show a satisfactory comparison with corresponding analytical results; a
fundamental difference between the flows is that the flow field found numerically shows a slightly detached
shock wave, whereas it is assumed to be attached in the analytical study. Some computations for flow fields
with strip blowing were carried out.

The second study has been motivated by the concept of surface-launched rather than space-launched
kinetic-energy weapons for intercepting ICBM's during their ascent trajectory. Because this requires final
interceptor velocities that are several times circular-orbit velocity, takeoff to payload mass ratios must be very
large when using conventional rocket engines. Thus minimization of overall interceptor mass ratio is a natural
goal in trajectory optimization. The high centrifugal acceleration associated with supercircular speeds means that
sizeable down forces, corresponding to many g's of acceleration, are required to maintain the desired intercept *
trajectory. A key result of the research has been the determination of the important gains associated with the use
of aerodynamic forces versus propulsive forces for achieving the required down force.

Specific contributions of the research include: a good understanding of the basic form of the optimum
trajectories including the midcourse aeroassisted phase; the nature of the optimal stage design; the effect of target
parameters, time of flight, number of stages, specific impulse of rocket engines and trajectory constraints on the
optimum launch mass; effective tools for implementing reliably and efficiently the numerical optimizations:
development of fast, efficient methods for numerical integration of the trajectory equations; approximate
analytical characterizations of the separate phases of the optimal trajectories; development of a new scheme for
overcoming the poor conditioning of the optimization problem by (indirectly) parameterizing the angle of attack
through specification of the flight path angle. In addition, a simple method of attitude control for a final
spinning guided stage has been developed, based on thrust modulation of a single side-thrusting control jet.
This simple control scheme produces minimum-time attitude control maneuvers and realizes the required
complex feedback control law by a simple on-board computer implementation.

Details of analyses from both studies are contained in published papers, copies of which are contained
in Appendix A of this report.

Suggestions for further work include:

I) Aerodynamic Control Using Gas Injection Into the Boundary Layer

I) Inclusion of equilibrium chemistry (dissociation and reaction) in the Navier-Stokes code. The stability
of the shear layer is sensitive to the temperature distribution in this layer, which is affected by chemical



reactions which may occur. Frozen and equilibrium flow calculations allow these effects to be
bracketed.

2) Improvement of numerical code efficiency so as to handle separated flows economically, in terms of
computer time. This will involve implementation of implicit time-marching or multi-grid relaxation, or
both.

3) Definitive study of strip blowing, including both analytical and numerical studies, and including cases
of simple and multiple strips.

4) Study of shear-layer stability in hypersonic flows, both analytically and numerically. Little previous
work has been done on this problem, which must be understood before extensive practical use can be
made of the injection of gases in the boundary layer for aerodynamic control.

5) Numerical study of temporal effects associated with stopping and starting blowing. Steady state
examples give satisfactory results. Any problems associated with the unsteady processes when starting
or stopping the blowing bear upon the feasibility of using surface blowing for control purposes,
especially if a rotating vehicle with a control which is on only during part of the rotation is considered.
This study will involve extending the temporal accuracy of the codes.

6) Study of effects of increasing altitude, to a point where free molecule flow exists; calcuation of jet
forces needed for vacuum conditions (no boundary layer). It is not possible to cover the whole range
from continuum to vacuum conditions computationally.

7) Consideration of three-dimensional, axially symmetric body in hypersonic flow at an angle of attack.

I) Combined Atmospheric and Exo-atmospheric Attitude and Trajectory Control

1) Extension of the research on attitude control out of the atmosphere to integrate it with the research on
generation of aerodynamic forces at hypersonic speeds using boundary-layer injection (Part I).

2) Extension of the time-optimal control laws developed for a spinning missile with an on-off thruster to
the continuously-thrusting case, where hot gas is switched back and forth from one nozzle to another.
This single control scheme has the advantage that it can be utilized both for attitude control in the
atmosphere, using boundary-layer injection, and for control out of the atmosphere.

3) Modification of the thrust-switching scheme to provide high-resolution attitude cutrol by means of
pulse-width modulation of the control-jet switch.

4) Implementation of closed-loop control with high sample rates by storing only one-bit switch position
data in the multivariable function table for the time-optimal control law, based on the desired attitude
and current measurements of missile attitude and attitude rate. The multivariable function scheme for
storing control-jet switch times, as developed in the research to date, uses on-line table lookup with
linear interpolation to determine thruster turn-on and turnoff times. The proposed new scheme offers
possible advantages over the table-lookup scheme. It is potentially simpler from a hardware point of
view and achieves direct closed loop control rather than partially open loop control.

5) Develop minimum-fuel thruster control laws.

6) Extend the parametric studies of trajectory optimization with the support of the simplified trajectory
optimization program developed during the last six months. This research would be used to provide
performance requirements for the attitude control schemes described above.
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FINAL REPORT

I. Introduction

This final report covers work supported by Contract No. DASG60-88-C-0037 for a two

year period beginning on April 15, 1988. A two-month no-cost extension was granted so that
the writing of this report would not conflict with end of the academic year duties.

Aside from the faculty members listed as principal or co-investigators, five graduate

students working on their PhD degrees, one post-doctoral fellow, and one undergraduate

student worked on this project. One of the graduate students has completed his work and has

graduated, two are well along in their research and should be finished within a year, and two are

in the initial phases of their research.

The research work to be described here actually began with a 13 month SDIO contract

monitored by AFOSR (No. F49620-86-C-0138; September 15, 1986 to October 14, 1987).

Due to a unique option clause which was not noticed by the original contract monitor, the

original contract lapsed during the period when the management of this and other contracts was
being transferred from AFOSR to the Army Strategic Defense Command: a new contract, the

present one, was submitted and awarded. The net effect was a six-month hiatus in research

support, although some graduate student work continued.

Two different but related studies were supported by this contract and thus are discussed

in this report. The first involves the use of gas injection from the surface of a hypervelocity
vehicle such that the effective shape of the body is changed so as to obtain desired aerodynamic

forces, and thus desired vehicle control. The second has to do with the attainment of optimal
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trajectories for trans-atmospheric vehicles to achieve minimum vehicle mass and minimum

transit time, or minimum energy expenditure for a given transit time. Both thrust and

aerodynamic control were considered in the second study. The application of either study is to

any hypervelocity vehicle which spends at least part of its time in the atmosphere, including

ground based kinetic energy weapons. The type of aerodynamic control analyzed in the first

study allows for consideration of a gas injection scheme which might possibly be used both

within and outside of the atmosphere. 0
The type of aerodynamic control analyzed in the first study allows for consideration of a

gas injection scheme which might possibly be used both within and outside of the atmosphere.

That is, one could imagine a conical vehicle with four regions of gas injection, each extending

from nose to base over a 200 to 300 circumferential arc, with each region centered about lines

900 apart. In addition, valving would allow changing the gas flow to four jets with equal

circumferential spacing near the nose and four more near the vehicle base. In the atmosphere,

control is attained through changing the displacement thickness of the boundary layer

asymmetrically by blowing. 'Outside the atmosphere, control is maintained through the jet thrust

applied asymmetrically. Mass flow requirements will probably be different in the two limiting I
cases. Preliminary indications are that strip blowing, rather than the distributed blowing just

described, may provide a more flexible and efficient control system in the atmosphere; in that

case, the valving needed to change to jets will be quite simple. In any event, the fundamental
idea of control by gas injection would be the same for flight in and outside of the atmosphere

and the general mechanical devices required would be the same. It should be noted that such a

control system would then be useful both for earth-launched vehicles which either remain in the

atmosphere or go into space, and for space-launched vehicles which either remain in space or

enter the atmosphere.
An important consideration for any control system is its scaleability. In order to address _

this problem, using the best available information from the studies made so far, an estimate of

the mass rate of flow of injected gas has been made for a vehicle of 500 gms mass and volume

of 500 cc, configured as a 100 cone traveling at a Mach number of 25 at 200,000 ft. The

injected gas is taken to be helium. Currently solutions are available only for a two-dimensional

weage, not a cone. Even if it is assumed that gas is injected over a 200 arc on the cone, there 0

may be significant 3-D effects. Nevertheless, the solutions obtained for the wedge should be

representative of what would be found for flow over a cone. Calculations indicate that in order

to achieve a 2-g transverse acceleration, a gas flow rate of roughly 0.6 gins/sec is required.

Thus, even if it were necessary to maintain 2-g's over two to three minutes, only 70 to 110 gms

of helium would be required. (Less hydrogen would be needed; here helium was chosen so that 0

no chemical reactions need be considered.) Although this result gives only the required mass of

2
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injected gas, with no account taken of the necessary gas generator and valving weights, the

estimate appears low enough to give good indication that the control system can be scaled down

for quite small vehicles.

It appears, then, that a control system employing gas injection is scaleable and has the

possibility of being used for both endo- and exo-atmospheric vehicles. Further study would

seem warranted. In particular, the behavior of the injected gas as altitude increases and vacuum

conditions are approached requires analysis, as does the effect of unsteadiness. Finally, three-

dimensional flow fields will have to be considered.

Quarterly progress reports [1 - 7] have been submitted, as required. Publications and

conference papers resulting from this work are referred to in the following text and reproduced

in Appendix A.
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II. Review of Work Accomplished

Part 1. Study of gas injection into the boundary layer on a wedge at S

hypersonic velocities

1. Introduction

The first effect of gas injection at a low rate from the surface of a body in a flow field is

a thickening of the boundary layer (weak blowing). As the mass flux of injected gas increases,

the boundary layer eventually is blown off the wall, so that a three layer flow structure is

obtained (strong blowing). The blown-gas layer is adjacent to the wall; above this are first the
shear layer and then the shock layer, which is immediately downstream of the shock wave. In

Figure I (from Reference 8) are shown sketches illustrating both weak and strong blowing, the

speckled regions corresponding to the boundary layer and shear layer, and weak and strong
interactions, in flow over a thin wedge. Here, the term weak interaction refers to the fact that

solutions for the boundary layer (weak blowing), or the shear and blown-gas layers (strong

blowing) may be found independently of the solutions in the shock layer; solutions from the
shock layer merely provide boundary conditions. When the interaction is strong, on the other
hand, solutions in the shock layer and inner layers must be found simultaneously; they affect

each other strongly. Weak interaction occurs when the thickness of the inner layers (boundary
layer in weak blowing, and shear plus blown-gas layer in strong blowing) is small compared to
the thickness of the wedge, and strong interaction when the thickness of the inner layers is large

compared to the wedge thickness. In order to quantify these ideas, Xr is defined as the distance
from the vertex of the wedge to the point where the boundary layer is of the same thickness as
the wedge. The thickness of the boundary layer increases more slowly than does that of the
wedge, so that for X/Xr >> 1 (X is the distance from the wedge vertex) the interaction is weak

and for X/Xr << 1 it is strong. When the blowing becomes strong and the boundary layer is

blown off the wedge, the cases considered are those where the thickness of the shear layer is at
most of the same order of magnitude as the thickness of the blown-gas layer, so that the

definition of Xr may still be used to order weak and strong interactions. It may be noted that as
x = X/Xr - 0, separate layers cannot be defined and the entire region of disturbed flow near the

leading edge is referred to as a merged layer. In Figure 1, this region is shown to occur for x =

0(a 4) where ax is the semi-vertex angle of the wedge; since the wedge is thin, a << 1.

In the event the blowing is weak and the boundary layer remains attached, the

distributions of velocity and temperature are those typical of boundary layers. When the
blowing is strong, the distributions of pressure P, temperature T, flow velocity u, and relative -

mass concentration of blown gas Yb are sketched in Figure 2, again from Reference 8. Of
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particular importance is the large spike in temperature caused by the transfer of ordered to

thermal energy as the flow is decelerated in the shear layer.
The fundamental goal of the work described here was to ascertain the viability of

boundary layer blowing as an aerodynamic control. The first point at issue was the magnitude

of the mass flux of injected gas for realistic forces. To that end, it was decided early to consider

strong blowing first so that the largest possible forces would be achieved, and to assess the

*0 corresponding mass rate of flow of blown gas. Next, the distribution of pressure forces was

clearly an important point and so it was clear that both distributed and strip blowing cases had to
be analyzed. Third, because injected gases other than air are of considerable importance in

terms of both cooling efficiency and force obtained per unit mass flux of blown gas, and since
the effects of dissoc.tion and chemical reaction had to be assessed, it was decided that at least a

* simple gas mixture and chemical equilibrium had to be included. These points will be discussed

in varying detail in what follows.

One important point which has not been addressed is the effect of turbulence. It is

common practice to employ the Reynolds averaged equations of motion with some closure

model for the turbulent eddy viscosity, in solving flow problems involving turbulent boundary

layers. These models consist of the use of an algebraic equation in the simplest case to two

partial differential equations in complex cases. It is known that as Mach number and altitude

increase, transition to turbulent flow occurs at higher and higher Reynolds numbers and thus

becomes less and less of a problem. In Figure 3 (Reference 9) are shown experimental, flight

and wind tunnel data giving the transition Reynolds number as a function of the Mach number

and the mean Reynolds number per foot. Superimposed on this plot arc curves showing the

actual Reynolds number for a body that is ten feet long, at various altitudes, and at the indicated

Mach numbers. It is seen that above 25,000 feet, a very low altitude, the actual Reynolds

number is considerably less than the transition Reynolds number, so the flow is laminar.

Hence, in all that follows, laminar flow is considered. It should be noted that the method of

blowing, e.g., using a finite number of holes rather than a completely distributed injection over

a surface, could cause local areas of turbulent flow. This level of detail was not considered in

the present study.

* Because this was in large measure a feasibility study, thc implest possible geometry for

a body in hypervelocity flow was employed. Thus, a thin wedge in a two-dimensional

hypersonic flow field was chosen, with gas being injected from one side wall. Since the

pressure which occurs with inviscid flow is easily calculated, the force difference induced by

blowing was found by consideration of only the flow field over the side with blowing. Two

40 methods of analysis were used, one essentially analytical in nature and the other numerical. The

analytical studies, confined to very simple sub-problems in the main, provided much needed

5



information on the scaling of various regions, to be used in setting up numerical algorithms, as

well as solutions which gave insight to the problem and examples to which numerical solutions

could be compared as checks of the algorithms. Because there are few if any experimental

results available for comparison, these checks are very important. The numerical analysis

provides two codes. In the first, which holds for inviscid flows, a number of flow fields can be

studied as long as the boundary layer has been blown off the body and conditions are such that

the shear layer is thin compared to the other two layers; with the inviscid flow code, such

studies can be made relatively easily and inexpensively. The other code is a full Navier-Stokes

code. When strip blowing, or blowing which does not start at the vertex, is considered, for

example, this code must be used because the existence of separated flow and recirculating

regions means that viscous terms are required.

In the following, the analytical and numerical studies are discussed separately, for

convenience, although the work was carried out in one cooperative effort. It may be noted that

the first task carried out in the original contract was a literature search. In Appendix B is given a

list of relevant references which may be useful to others working in this field. In particular,

some references are presented from thirty years ago, when there was considerable interest in 0

hypersonic flow and some flows with blowing were considered.

2. Analytical Approach

As noted above, a major goal of this study has been to estimate the size of the

aerodynamic forces available as a result of surface blowing. The force changes are caused by

the distortion of the flow field that results from gas injection, and so a detailed study of the flow

is required for a calculation of the modified pressure distributions. We wished to have at least

one analytical formulation which would provide insight into the manner in which various 0

parameters of the problem will affect the resulting aerodynamic forces, as well as a means of

validating computer codes developed to handle more complicated cases. Moreover, in such an

analytical formulation most of the parameters can be absorbed through rescaling of the

variables, so that the solutions depend on a relatively small number of dimensionless

parameters. The simplest example appears to be two-dimensional flow past a wedge with a

continuous distribution of blowing velocity in a power-law form, such that the problem requires

study of ordinary rather than partial differential equations. Later of course one would wish to

consider more complicated geometries with more general blowing distributions.

For sufficiently strong blowing the boundary layer is blown away from the surface as a

free shear layer. If the blowing rate is large enough (but still for low subsonic values of the

injection velocity), for fixed values of the other parameters, the shear layer will be very thin

6



relative to the total displacement of the outer flow, and may be neglected in a first

approximation. The pressure force causes the injected gas to move downstream, still at a speed

much lower than the speed of the undisturbed flow. The displacement effect is then caused

entirely by the layer of blown gas and is described by the inviscid-flow approximation of Cole
and Aroesty [10]. Our first calculations focused on application of this theory to determine force

changes resulting from various blowing distributions with various chemically inert injectants.
*0 In hypersonic flow, however, viscous layers are hotter and therefore substantially

thicker than at lower speeds. It was thus anticipated that significant flight regimes exist where

the viscous shear layer may not be neglected, and an extension of viscous-interaction theory to
include strong blowing was derived. As explained earlier, sufficiently far downstream from

the leading edge the interaction remains weak, since flow disturbances caused by the blown gas

and the shear layer are small. At points closer to the leading edge, however, the shear-layer
thickness is as large as, or larger than, the wedge thickness and the interaction with the external

flow is strong. The analytical ideas are discussed in a paper [ 11] (Appendix A) which has been
accepted for publication in the Journal of Fluid Mechanics. The shear layer has been assumed

0 laminar, since, as already discussed, for typical values of Mach number and Reynolds number

transition to turbulence is not expected to occur on the wedge. The temperature of the blown
gas is considered to be much lower than the high temperature in the shear layer.

In the limiting cases considered, solutions can be obtained for the thin layer of blown

gas adjacent to the surface, for the thin viscous shear layer, and for the outer inviscid-flow
region between the shear layer and the shock wave. Certain constants are obtained by suitable

matching conditions, and the end results are surface pressure distributions for both the strong-

and weak-interaction regions. The introduction of an interpolation formula then provides an
approximate description of the surface pressure over the entire length of the wedge and allows
integration to give a relation between the blowing rate and the change in the pressure force.

A numerical solution was required for the system of equations describing the shear

layer. The desired solutions proved difficult to compute since they exhibit singular behavior at

the lower boundary (closest to the wedge) of the shear layer where the temperature and velocity
are low, a property which was understood only after a substantial amount of numerical

experimentation; once the behavior of neighboring solutions was known, a suitable numerical
procedure could be developed. The two-point boundary-value problem to be solved was one in

which the location of the lower boundary is not known a priori and may only be determined

after it is further specified that the numerical solution must have the proper asymptotic behavior

as the lower boundary is approached (the velocity and temperature must vary as specific powers
of the coordinate). As an additional complication, it was found that the required behavior,

based on the asymptotic solutions that were derived analytically, occurs in an extremely small
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neighborhood of the lower boundary, typically between 10-4 and 10- 3 times the size of the

overall computational domain. Numerically this requires an exceptionally high level of
resolution near the lower boundary. Initial attempts at solving the problem using a shooting

method, together with asymptotic solutions and certain invariance properties of the system,

were unsuccessful. A Newton-based finite-difference scheme utilizing continuation, with the
location of the lower boundary treated as the free parameter, was ultimately found to be

successful. A complete description is given in a paper [121 submitted to the Journal of 0

Computational Physics (Appendix A). In Fig. 4 (similar to Fig. 2 from Ref. 12) typical

computed solutions for the scaled velocity and temperature profiles in the shear layer are shown
and a comparison is made with the asymptotic solutions near the lower boundary. It may be
seen that the agreement between the numerical and analytical solutions is very good, and thus

provides a validation of the numerical computations.
Initially, asymptotic solutions were obtained for the case of air injection at constant wall

density, with air treated as an ideal gas (constant specific heats and no dissociation). The

formulation was then extended to include injection of a chemically inert foreign gas with either
constant wall density or constant wall temperature. Finally, to provide a measure of the extent 0
to which ideal-gas results are changed, the analysis for the weak-interaction region was repeated

for injected air using equilibrium chemistry, with the effects of variable specific heats and
dissociation of oxygen included (the first deviations from ideal-gas behavior as temperature
increases). Numerical results have been obtained for a range of Mach numbers and altitudes,

for different wedge angles and lengths, for different blowing intensities and surface

temperatures, and for various injected gases. The results are contained in a paper presented at
the AIAA Aerospace Sciences Meeting in Jan. 1990; an extended version [8] (Appendix A)
including a calculation with oxygen dissociation has been submitted for publication in the AIAA

Journal. 

In Fig. 5 (Fig. 3 from Ref. 8) the scaled surface pressure distribution (measured relative
to the undisturbed surface pressure) is shown for a wedge with three different values of a scaled

blowing rate. (See Ref. 8 for complete definitions of these quantities.) For each blowing rate,
the asymptotic solutions for the weak and strong interaction regions are indicated by dashed
lines, and the interpolated solution by a solid line. The pressure variation in Fig. 5 results from

strong blowing normal to the wall, with the injected mass flux varying as a particular power of
the coordinate x, a choice made, as pointed out previously, to allow reduction of the partial

differential equations to ordinary differential equations.

Note that, as would be expected, the pressure increases as the blowing rate increases.
Note also that, for a given blowing rate, the surface pressure decreases monotonically in the

streamwise direction, a feature to be expected since a favorable pressure gradient must be
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present to drive the injected gas downstream. To achieve a more general pressure distribution,

one would probably require injection through discrete strips.

A principal result of the analytical work is shown in Fig. 6 (Fig. 5, Ref. 8), where a

scaled change in force on a wedge of length L with vertex half-angle a is plotted against a

scaled mass-flow rate for various cases, all with constant wall temperature. In general, the

scaled force change depends not only on the scaled blowing rate, but also on the type of

injectant, the ratio of wedge length L to the reference length Xr (where Xr gives the approximate

boundary between strong and weak viscous interaction), and the hypersonic similarity

parameter Mooa (which equals the component of the free-stream Mach number M. normal to

the wedge surface, for small ax). Three limiting cases are shown for air injection. For

L/Xr--- O, strong interaction occurs over most of the wedge, and the solution is independent of

M.a in a first approximation, since the total displacement thickness is large in comparison with

the wedge thickness. For L/Xr-4-, weak interaction occurs over most of the wedge, and for a

fixed scaled blowing rate a larger force change is found for Moa-4-oo than for Mco:,-0, as

might be expected since the latter case can be interpreted as describing a wedge thickness which

tends to zero in comparison with the total thickness of the region of disturbed flow. It appears
worthwhile to note that all other cases for air injection will lie in the region of the figure

bounded above and below by the two curves for LIXr---0.

Also shown in Fig. 6 is a comparison between air and helium as injectants, for L/Xr= I

and Mooo=l. As in the inviscid-flow case considered by Cole and Aroesty [10], it is seen that
strong blowing of a gas lighter than air, in this case helium, yields higher surface pressures and

thus larger force changes for a fixed mass flow than would be found when air (or a gas heavier

than air) is used as the injectant. Interestingly, this trend appears to become reversed when the

strength of the blowing decreases. It is found that the high specific heats of light injectants

cause substantial cooling of the viscous layer, thereby reducing its thickness. At quite low

injection rates, where t.ie viscous layer provides a large fraction of the total displacement

thickness, this can lead to a reduction in force on the wedge. The curves for air and helium

would therefore be expected to cross if they were extended to smaller values of mass flow.

(Curves are not plotted near zero scaled blowing rate since it has been assumed that the blowing

is sufficiently high to cause an inviscid blown layer with thickness at least of the same order as

that of the shear layer, this condition is violated if the blowing rate is taken too small.)

To establish numerical orders of magnitude, dimensional values of the change AF in

force (per unit span) and the total mass-flow rate rh of injected gas (per unit span) have been

computed for a range of parameter values and for various injectants, using the properties of the

standard atmosphere. The solutions depend on several parameters, which can be divided

conveniently into three groups. Parameters related to flight regime are Mo, and altitude z; those
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characterizing wedge geometry are a and L; and those representing properties of the injected

mass are ii, the wall temperature Tw , the ratio ab of the injectant molecular mass to that of air,

and the ratio yb of specific heats of the injectant. In Ref. 8 air injection on a wedge having

length 3m and half-angle 6 deg, for Mach number Mo= 15 and altitude z=30km, was selected as

a baseline case. For this case it was found that rather large changes in force per unit span, of

the order of lOOON/m (68.5lb/ft), are achieved with seemingly moderate injection rates per unit

span, of the order of 0.1kg/m-sec (0.0671bm/ft-sec). The parameters were systematically

varied and a typical result is illustrated in Fig. 7 (Fig. 6a of Ref. 8), where AF is plotted against

in for various flight regimes, with air injection. (Also shown are results from the real-gas

analysis, to be discussed later.) As may be seen, for given injectant rates the force changes

increase with increasing Mach number and decrease with increasing altitude. In Ref. 8 it is

shown that, for a given Mach number and altitude, the force changes increase with wedge angle

and wedge length. Overall trends with changes in the parameters are about as expected.

For the higher injection rates, if a simple isothermal model for the atmosphere is

adopted, and certain relatively small variations are ignored, a rough approximation showing the

primary dependence on parameters is given by (Ref. 8)

AF = const. (Mo. 2 e- z H L n 2 Tw /ab )/3

where H is the atmospheric scale height and the other parameters have already been defined.

This simple expression shows most of the major trends, although not the proper quantitative

values. It is seen that the force change increases with increasing M. 2 e -z/H, a factor

proportional to the free-stream dynamic pressure. Increasing the ratio Tw/ab of the injectant

temperature to its molecular mass will cause greater displacement of the outer flow and thus also

increase the force change. The dependence on wedge length L implies that it would be most

efficient to distribute a given amount of blown mass over a large surface area.

At higher temperatures, real-gas effects must also be taken into account. For air, the

specific heats begin to vary when T _iwO K, and 02 begins to dissociate when TZ2000-2500 K,

for p-0.0 I-I atm. In the real-gas analysis the temperature was assumed low enough that, to a

good approximation, only the dissociation of oxygen occurs. (For pressures of the order of 0.1

atm, this assumption limits the temperature to values below about 4000 K; the limit increases

with increasing pressure.) Air is then composed of N2 , 02, and 0. The real-gas analysis leads

to values of the maximum temperature in the shear layer that are lower than the ideal-gas values,

as would be expected. The shear-layer thickness is likewise reduced, but only by a relatively

small amount; for a 6 deg wedge at 30 km altitude with M0.=20, there is about a 5% decrease in

shear-layer thickness, and a still smaller fractional change in the excess pressure force. For the

two cases illustrated in Fig. 7, real-gas effects are seen to give only small changes in the force
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change corresponding to a given blowing rate. The differences would of course be greater if
higher Mach numbers and temperatures had been considered.

Currently some of the issues relevant to strip blowing are being considered. Boundary-
layer separation will occur ahead of the point where blowing is first introduced. At supersonic

speeds, the flow near separation can be described by a local interaction of the viscous boundary
layer with the external inviscid flow. In a recent paper [131, this kind of local flow description

has been shown to remain possible at high Mach number, with certain modifications, provided

that the wall is cooled and the wall temperature is well below the stagnation temperature of the
external flow. We have been able to simplify the results of this work, with the intention of

using these results to provide initial conditions for a study of strip blowing at hypersonic
speeds. With this added information, an existing theoretical description of strip blowing at

supersonic speeds [14] can be extended to higher Mach numbers. Work on the separated region

downstream of a strip is in progress with consideration of a simple case where the blowing
velocity at the trailing edge of the strip is small but finite.

As noted elsewhere in this report, numerical solutions have indicated an instability of the
free shear layer that appears to be a genuine physical effect rather than a consequence of the

computational method. Others have also encountered such an instability in numerical

calculations [15]. Following a few investigations of the stability of hypersonic boundary
layers, a recent analytical study considers linear instability at high Mach number for a free shear
layer with a prescribed velocity profile [16]. An analytical study of vortex-sheet instability at
supersonic speeds includes nonlinear effects [17], but neglects shear-layer thickness, and finds
"kink" modes, with a shock wave on one side and an expansion wave on the other side. Much

more needs to be done, to gain a full understanding of the conditions under which instability

should be expected and to consider ways in which instability might be avoided. In particular,
the nonlinear theory should be extended to hypersonic speeds, both for a vortex sheet with zero

thickness and for a shear layer with nonzero thickness.

3. Numerical Approach

The computation of hypersonic flows, in the Mach-number range 8-30, puts before the

computational fluid dynamists a number of problems not encountered for lower Mach numbers.
Most serious is the loss of accuracy of conventional finite-volume methods when capturing

strongly oblique discontinuities. In the initial research period, preceding the period covered by

this final report, an attempt was made to develop a finite-volume code that would be more nearly
* isotropic in its treatment of oblique discontinuities. This was to be accomplished by computing
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inviscid fluxes in a frame locally aligned with the most prominent physical feature, for example,

a shock wave. 0
It turned out that the development of a robust technique of this kind was far less trivial

than expected. To avoid stagnation of the research, this approach was abandoned for the more

standard one of generating a grid more or less aligned with the most important shock and shear
waves, and cluster the grid points near those waves. (The formulation of inviscid fluxes in a

frame rotated with respect to the grid is currently the subject of two thesis projects in the 0

Department of Aerospace Engineering).
A general strategy adopted in developing the more conventional computational code was

to validate the code as often as possible as greater degrees of complexity were added. For lack

of experimental results, the code was benchmarked against analytically obtained flow solutions.

Two decades ago Cole and Aroesty [10], and Wallace and Kemp [181, and recently Messiter

and Matarrese [8, 11, and in Appendix A] were able to obtain similarity solutions for inviscid
hypersonic flows over flat plates and wedges in the presence of strong surface blowing. These

solutions all involve blowing distributions which are singular at the leading edge and therefore

are harder to match than experimental data, thus putting strong demands on code accuracy and

robustness.
Initially, an Euler code was written and used to reproduce such solutions. The code is

based on a higher-order Godunov-type [19] finite-volume discretization of the inviscid Euler

equations. Higher-order accuracy is obtained by reconstructing interface values of the state
quantities using a monotone interpolation technique suggested by Koren [201, based on Van

Leer's "kappa" scheme [21] [22]. The interface fluxes are computed using Roe's upwind-
biased flux-difference splitting technique [23]. Standard characteristic boundary procedures are
applied along the leading edge and top of the computational domain (Fig. 8). Proper treatment

of the wall and exit boundaries proved to be the first real challenge in developing the code.
Wall boundary conditions were initially implemented through a combination of a

characteristic boundary condition and a ghost cell approach. The desired blowing distribution
was achieved by specifying the velocity magnitude, direction and either the density or

temperature in the ghost cells just "below" the wall. The pressure in these cells was then

determined by extrapolating an incremental form of the Riemann invariant to the wall in a
characteristic boundary procedure. The incremental form of the Riemann invariant was, and

still is, used, since the flow may not be locally isentropic near the wall. This method, though
very robust, did not enable precise specification of the mass flux along the wall. The actual

mass flux resulted from the application of Roe's approximate Riemann solver at the cell

interfaces along the wall boundary. It was determined that in order to accurately reproduce the

types of injection distributions used in the analytical solutions, a more exact method of
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specifying the inflow boundary conditions was required. Instead of specifying the flow values

in the ghost cells, the same extrapolating methods are used to specify the flow values at the

boundary itself. From these quantities, the exact inflow fluxes may be derived. This provides a

greater degree of control over the injection distribution, but it also results in a less robust

boundary procedure.

Along the rear portion of the grid where the flow exits the computational domain, both

supersonic and subsonic outflow conditions exist. For the subsonic exit flow region, a

characteristic boundary procedure requires the specification of some flow parameter, such as the

pressure, along the boundary of the grid. Since little is known about the solution a priori, this

is not possible. An order-of-magnitude analysis of the governing equations shows that the

pressure is nearly constant across the blown layer which contains the subscnic region. Initially,

a pressure was extrapolated from the supersonic exit region down to the subsonic region

assuming a zero pressure gradient normal to the wall. This enabled the use of a standard

characteristic boundary procedure. Unfortunately, such a scheme delays, or even prevents,

convergence of the solution.'
A time-dependent non-reflecting characteristic boundary condition developed by

Hedstrom [24] of the form

- - patt= 0

was considered, but was found to produce a steady state which was dependent upon the initial

conditions. It was noted, however, that by introducing the pressure gradient normal to the wall

as a source term in Hedstrom's condition, it becomes an effective mechanism for enforcing the

proper behavior of the pressure along the exit boundary. This exit boundary condition has the

form

-- -pa- = -K(u-a) -
at at ay

where K is a constant, typically taken to be between 0.1 and 10. If K is taken too small or too

large, convergence to a steady state is delayed.

Two different time-marching algorithms were considered during the development of the

code. It was first considered to use a block-Gauss/Seidel technique, used by Koren [201. This

algorithm updates while sweeping through the grid in the coordinate directions, updating all

* flow variables in one cell simultaneously. For two-dimensional flow, this requires the
inversion of a local 4 x 4 matrix. This method turned out to be less robust than was anticipated.
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Especially in the initial phases of the calculation, when strong transients are present, severe

under-relaxation was needed to prevent loss of positivity, i.e. temperatures becoming negative,
which considerably reduced the efficiency of the method. In the later stages of convergence,
time-steps corresponding to Courant numbers of the order of 10 could be maintained.

A well-known disadvantage of sweeping algorithms such as Gauss/Seidel, is that they

do not lend themselves very well to vectorization. When CPU time on the Cray machines at the
National Aerodynamic Simulator facility became available, it became desirable to select a

method more compatible with vector processing.
The answer was found in certain multi-stage explicit marching methods concurrently

developed [25] at the Aerospace Engineering Department. These methods, when applied to a
scalar convection equation, achieve optimal damping of high spatial frequencies in the
instantaneous error (the deviation from the steady solution). The more stages the method
includes, the better the short-wave damping becomes; since strong transients usually contain

strong spatial high-frequency components, methods with good short-wave damping are

expected to be robust. The experience in using these methods for the full nonlinear Euler
equations in the hypersonic flow regime indicates that the two-stage method performs as well as

any of the more-stage methods, and is more robust. The reason probably is that using many
stages leads to a larger time-step for the multi-stage method than is warranted by the linear

analysis on which the scheme's coefficients are based.
The two-stage scheme is a simple predictor-corrector method for solving the equation

au
at L(U) ,

namely,

un+a = Un + cc At L(Un)

Un+l = Un +At L(Un+ °x)

where n indicates the iteration number. The parameter a is adjusted such that the overall

method is most dissipative for the high-frequency part of the spectrum for the spatial

differencing operator L(U). For example, if L(U) is the first-order upwind differencing
operator, the optimal value of ax is 1/3, and is associated with a time step At corresponding to a

Courant number of 1/2 (half the maximum allowed by stability for this operator). For the third-
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order spatial differencing scheme adopted in the code, the value of (Z becomes 0.6612 and the

associated At corresponds to a Courant number of 0.8276.

Proper construction of a computational grid proved crucial in obtaining accurate

solutions of flow fields for which analytical solutions exist. Strong blowing distributions
which extend up to the nose of a wedge result in strong, highly curved shocks. Blowing

distributions which are singular at the nose (x=0) require a great deal of refinement at the nose

in order to adequately resolve the singularity. To keep the total number of grid points down to a

manageable level, the grid point spacing increases away from the nose (by about 10% per cell
typically). Representation of a strong curved shock on a grid with uneven spacing in the x and

y direction can result in solution inaccuracies and even non-convergence.
As the shock changes its orientation relative to the grid, its numerical "structure"

changes. For example, if the shock is aligned with the grid in one direction, the shock can be
resolved to within a single cell, whereas when the shock passes through the grid at an oblique

angle, it can be smeared over 4 to 5 cells. The difference between these two representations of

the shock is also manifested in different post shock entropies or densities. This was one of the
main motives behind the early work in calculating interface fluxes in a frame locally aligned with

the shock instead of the grid. Fig. 9 shows a carpet plot of the density for a case in which this

effect is very prominent. Notice that the post shock density varies non-smoothly along the
shock as it changes its orientation to the grid. These density variations are then convected back

into the flow.
Rapid variations in the numerical representation of the flow can also lead to non-

convergence of the flow solution. After decreasing several orders of magnitude, the residual

becomes nearly constant in the distorted region, and is convected back with the flow. The exact

mechanisms behind this phenomena are not clear, but the problem can be eliminated by better

alignment of the grid with the flow.
The code was used to calculate solutions for three different comparison cases for which

analytical solutions exist. The cases considered were for an inverse-square-root injection-
velocity distribution along a flat plate in both the strong and weak interaction regions and along

a wedge in the weak interaction region. In each comparison case, good agreement was obtained

between the analytical and numerical solutions. This validation study was developed into a

paper entitled "Euler Computations of Hypersonic Flow with Strong Blowing" and presented at
the AIAA 281' Aerospace Sciences Meeting in Reno, Nevada (26, and in Appendix A).

With the completion of the inviscid code validation study, viscous terms were added to

the code in order to model the Navier Stokes equations. The discretization of the diffusion
terms is done by second-order-accurate central differencing [27]. This preserves the second-

order spatial accuracy of the entire scheme.
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Validation of the Navier Stokes code began with a calculation of a subsonic boundary
layer on a flat plate. Fig. 10 shows good agreement between the scaled numerical velocity
profiles and a Blasius profile. The code also compared well with numerical solutions generated

at NASA Langley [28] for high Mach number flows in a nonseparated compression comer.
Next, a comparison with an analytical similarity solution derived by Messiter, Matarrese, and
Adamson [8, and in Appendix A] was attempted for flow over a wedge in the strong interaction

limit in which the shear-layer thickness is of the same order as the blown layer thickness. The
case of constant-temperature air injection was chosen, with the temperature of the injected air

equal to that of the free-stream air, and injection velocity specified proportional to x ' 1. Free-
stream flow parameters were;

M.=25,
Re**=50,000,

Pr,--0.72 ,

a=50.

where a is the wedge half angle. A power-law viscosity-temperature relation i.=T . , was used

to be consistent with the analytical work, It was found that for this case, the resulting shear
wave was unstable and oscillated back and forth (Fig. 11). The instability can be eliminated by
increasing the temperature, and hence, the viscosity coefficient of the injected gas. Fig. 12

shows a converged case in which the injected air temperature was equal to four times that of the
free-stream air. Unfortunately, such a case compares poorly with the similarity solutions. The
analytical work predicts a wall pressure distribution of the form

p pa2  ( L-)-1/2 (x)1/2
pU - y R

where the ratio of the plate length L to the viscous interaction length XR is equal to 0.0232 and

P1(') is equal to 0.74476. Fig. 13 shows a comparison between the numerically determined
pressure distribution along the wall and the analytical prediction. The reason for the

discrepancy is not completely clear. The numerical solution predicts that the shock will be
detached from the leading edge of the wedge whereas the analytical solution assumes that it is
attached. Also, as the temperature is increased in the blown layer, viscous effects become more
important yet are assumed negligible in the analytical blown layer.

The exact nature of the instability, namely, whether it is purely physical, or partly
numerical, is not clear at present. There certainly is a physical basis to the unsteady wave-

forms, but it is also clear that truncation error present in the code may influence or even trigger
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the instability. From a physical point of view, it is not clear whether the instability of these
layers is linear, i.e., comparable to the inviscid Helmholtz instability, or nonlinear. Numerical
experiments indicate it can be removed by increasing the physical viscosity. In the inviscid
case, where the instability was also observed [26, and in Appendix A], it can be removed by
maintaining the proper level of artificial viscosity, namely by downward limiting of the
computational cell size. It is conjectured that numerical "Jioise", generated at the leading edge,
where the flow gradients are very large, especially for the singular blowing distributions
considered, may seed the instability arid cause it to appear as a severe disturbance in flow cases
where it otherwise would become visible much farther downstream. This explanation is due to
Woodward [ 15], who encountered a similar shear instability in supersonic channel flow.

The case of constant-density air injection was also considered. The same free-stream
parameters were retained from the previous cases, and the injection parameters were chosen so
that the blown layer and shear layer thicknesses would again be equal. With an injected air
density equal to 25 times free-stream density and an injection velocity specified proportional to
x- ,,a stable solution was o6tained. Unfortunately the numerical and analytical predictions of
the wall pressure do not agree (Fig. 14). As before, the shock in the numerical solution stands
off ahead of the leading edge of the wedge. Also, for the constant density case, the temperature
distribution of the injected gas vaies as x- 2 (Fig. 15). With such high temperatures near the
leading edge, it is not clear that viscous effects would be negligible everywhere in the blown
layer as assumed in the analytical model. This would indicate that the constant-temperature
injectant case, while not only more physically realistic, shouldt p*fovide the best comparison.

In an attempt to obtain a stable constant-temperature injectant solution which compares
well with the analytical predictions, the code was modified to handle injection of a gas different
from the free-stream gas. This modification required the addition of a species conservation
equation to the computational code. Diffusion coefficients are calculated using proportionality
factors which are consistent with the analytical work [8, and in Appendix A]. It was anticipated
that injecting a gas with a lower molecular weight would decrease the Mach number in the
blown gas layer, and help to stabilize the shear layer. In practice, it was found that with the
same free-stream conditions and apparent body shape as in the previous cases, but with helium
injected at free-stream temperature, the shear layer was again unstable. If the temperature of the
injected helium is raised to twice that of the free-stream air, the shear layer can be stabilized,

whereas air injection required a blown gas temperature of four times the free-stream temperature -'

before a stable solution was obtained. This indicates that use of a lighter gas as an injectant not
only provides greater net body force for a given mass flow rate, but may also help to stabilize
the flow. However, the comparison with analytical results, although better, is not considered
satisfactory as yet; again, this may be due to some assumptions made in the derivation of the
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analytical results. More research is required in the area of hypersonic shear layer stability before

the relationship between temperature and molecular weight variation across the layer and the

stability of the layer can be completely understood.

Calculations were also performed involving more practical blowing distributions such as

blowing in discrete strips. Fig. 16 shows Mach number contours for a case in which helium

was blown from a 100 half angle wedge in two strips from 0.2 < X < 0.4, and 0.6 < X < 0.8

with uniform velocity and temperature along each strip. Free-stream conditions for this case

were
Mo.=25 ,

Re**=50,000,

Pr.--0.72.

Of particular interest in this solution are the two regions of separated flow which result from the

discrete blowing pattern. Fig. 17 shows velocity vectors in the separated flow region created

just ahead of the first blowing strip. The size of this region is not geometrically defined in that

the length of this region is dependent upon the blowing strength. In numerically generated 2-D

representations of such flows, we and others [28] have found that the length of the separation

region is also dependent upon grid resolution of the flow. This makes accurate calculations of

such flows very difficult. Adding to the difficulty of such calculations is the fact that free

separated regions tend to develop very slowly numerically, resulting in high computational

costs. Due to the frequent occurrence of such separated regions in flows with discrete strong

blowing, more research is warranted to find ways to rapidly and accurately resolve free

separated flows. Fig. 18 shows velocity vectors for the recirculation regions which occur

between the two blowing strips. The length of such a region is geometrically defined by the

spacing of the strips, but the effect of grid resolution on the resulting flow pattern is not yet

known.

4. Summary and Conclusions

Based on the work completed to date, it seems clear that it is possible to obtain

significant aerodynamic forces by injecting gas from the surface of a hypersonic vehicle at

relatively low rates of mass flow. For example, if one imagines a 1000 lb vehicle, say

10 feet long with a span of 2 feet at an altitude of 30 km and a Mach number of 15, then a

one-g maneuver would require a force per unit span of 1000/2 = 500 #/ft = 7300 N/m.

From Figure 6c of Reference 8 (in Appendix A) it is seen that an injection rate of roughly 0.40

Ibm/sec of hydrogen is required. This injection rate is evidently enough to cause the

boundary layer to leave the surface, thus causing a considerable change in equivalent
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body shape and hence pressure distribution and body force. Thus, this type of aerodynamic

control appears feasible.

The general pressure distribution obtained with distributed injection is, as seen for

example in Fig. 5 is one in which the pressure and thus the body force, decreases along the
body. This must be the case, of course, if the fluid is to flow along the body. Such a force

distribution may not be the one desired for a given maneuver; in that event, a series of strips

from which gas is injected at differing rates is needed. Hence, strip blowing must be

considered as an important part of this study. Moreover, because it may be necessary, for

practical reasons, to begin gas injection somewhat downstream of the foremost point of the

body, the flow field near the nose will be similar to that at the beginning of a strip. In this

event, separated flow regions of varying size will occur at the beginning and the end of the
strip. As mentioned previously, an inability to reproduce numerically a separated flow region in

the same number of iterations as required for the rest of the flowfield is a problem common to

all known codes for supersonic and hypersonic flows; in general, the separated flow regions

require three to ten times the computer time needed when no separation occurs. Because there

are so many separated flow regions when strip blowing is considered it is necessary that more

efficient methods of calculation be found. Some work on this problem has been done during

the latter part of this contract year. More remains to be done and is mentioned later in the

section on suggestions for new work. Analytical work on the strip blowing problem has also

been initiated, is also incomplete, and is mentioned later in suggestions for new work.
The inclusion of the effects of chemistry, through consideration of dissociation of

oxygen in a simple example solved analytically, indicates that the expected decrease in

maximum temperature occurs; that is, some of the thermal energy is used to dissociate the

oxygen molecules. The net effect on the force change is shown to be minimal, in the example

considered. However, this cannot be taken to be a general result as yct. More cases, including

those involving the more complex issues associated with the injection of a reactive gas such as

hydrogen, must be considered. Again, the inclusion into the numerical code of the ability to

handle enough mixture components and the calculation of equilibrium concentrations sLch that

hydrogen injection may be considered has been begun, but is not completed as of the end of the

contractual period; inclusion of this capability is mentioned in suggestions for future work.

It should be noted that the studies proposed and carried out under this contract are for

steady state flow fields. This is certainly a proper condition to consider for the first step.

However. there are cases for which a control would be actuated intermittently, rather than on a

steady basis. In that event, it is necessary to analyze the unsteady flow field structure and thus

the time dependence of the force distribution, for various startL ,nd stopping control

procedures. Such studies are proposed in future work.
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In summary the essential contributions of the research have been the establishment of the

viability of gas injection as a possible aerodynamic control, solutions for several benchmark

example cases, the development of a code valid for conditions under which the flow may be

considered to be inviscid, the development of a Navier-Stokes code for cases where viscous

effects are important, and the initiation of definitive studies of strip blowing and the effects of

chemical reaction, all at hypersonic flow velocities; the body shape considered was a thin
wedge. It should also be mentioned that two graduate students, Michael Matarrese and Nelson S
Carter, have been supported through a large part of their advanced graduate work by this

contract, their thesis work being on the analytical and numerical approaches described above.
In approximately one year, they should graduate and be in a position to join the professional

community in gasdynamics.
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Part II. Optimal Aerodynamic and Propulsion Control of Intercept

Trajectories at Supercircular Speeds

1. Introduction

The primary goal of the research in Part II has been to investigate trajectories and basic

design parameters for high-performance, multistage, earth-based interceptors with ranges of

several thousands of miles and flight times of a few minutes. Such interceptors offer a possible

alternative to the space-based interceptors which are currently being considered in the U. S.

Strategic Defense Initiative. While the earth-based interceptors have many obvious advantages,

they impose severe requirements on the propulsion system; both the stage accelerations and ratio

of launch mass to payload mass must be very large. Solid propellent engines offer the

capability of producing the required accelerations and small guided warheads can contribute
greatly to the reduction of the payload mass. However, even with relatively small payloads, the

high launch mass remains a critical concern. This has led us to base our research on the
minimization of the mass ratio with respect to the trajectory and the design parameters. A key

result of the research is the importance of using aerodynamic forces. When they are propexly

exploited during the midcourse phase of the trajectory, a sizable reduction in the launch mass is

achieved.

Specific contributions of the research include: a good understanding of the basic form of
the optimum trajectories including the midcourse aeroassisted phase, the nature of the optim:4l

stage design, the effect of target parameters and trajectory constraints on the optimum launch

mass, effective tools for implementing reliably and efficiently the numerical optimizations,

approximate analytical characterizations of the separate phases of the optimal trajectories, simple
methods for attitude control which may help to minimize the mass of the final guided stage, and

methods for evaluating the targeting capabilities of the final stage. In the remaining paragraphs

of this section, these contributions are reviewed briefly along with some comments on how the
research has evolved. Subsequent sections go into greater detail and make connections with
with material in prior progress reports [1-71 and technical papers [29-37, and in Appendix A]

which have been written under the contract.

Because of their very short flight times and long ranges the ground-based interceptors
require terminal speeds significantly greater than circular orbital speeds. Ai the onset of the

research activity little was known about the effect of such speeds on the design of the stages and
the ascent and intercept trajectory. It was clear that a down-force would be needed on the final

stage (or stages) to keep the trajectory from escaping to altitudes far above target altitudes.
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Since it does not consume engine fuel, an obvious candidate for generating the down-force was

negative aerodynamic lift. However, little was known about when and where in the trajectory

that such aeroassisted forces should be applied.

Answers to the stage-design and trajectory questions were sought by minimizing the

overall vehicle mass ratio with respect to variables such as: stage size parameters, engine burn

times, coasting times between stages, and the angle-of-attack program. This is a formidable

numerical optimization problem and much of the research activity was devoted to its formulation •
and solution. The formulation involved models of: the aerodynamic forces, atmospheric

density, vehicle structure, engine performance, and equations of motion [Section 21 Other

concerns were: approximate finite dimensional parameterizations of the infinite dimensional

control function (angle of attack) [Section 3], fast methods for accurate integration of the

equations of motion (thousands of solutions were needed to compute each optimal

trajectory)[Section 4], and the choice of an optimization algorithm [Section 3]. In the

beginning relatively simple optimization problems were solved and most of the effort was put

into the integration algorithms. As problems of greater difficulty were considered the

optimization problems became poorly conditioned, seriously affecting the reliability of the

optimization algorithms. The poor conditioning was overcome by a new scheme for (indirectly)

parameterizing the angle of attack through the flight path angle [Section 3].

As the numerical work proceeded it became possible to generate optimal trajectories for a

wide variety of target conditions. A general pattern emerged [Section 5]. The optimal ascent

trajectories consisted of three phases: a boost phase, in the atmosphere, to an altitude of

approximately 65 km.; an aeroassisted, coasting phase near the 65 km. altitude; an essentially

out-of-the-atmosphere coasting phase where the trajectory rises to intercept the target. The

details of an example optimal solution for a five-stage interceptor are shown in Fig. 19. The

three phase character of the optimal trajectory is evident. The flight time is six minutes; the

range is 3100 miles; the mass ratio is 1,900. Later, more extensive parametric studies were

performed. They show [Section 5] the effect on launch mass of such parameters as the time of

flight, the intercept altitude, the number of stages, the specific impulse of the engines. They

also show that eliminating the aerodynamic lift or imposing certain altitude constraints on the

ascent trajectory can increase significantly the optimal mass ratio. 0
Based on the results of the general optimization studies it has been possible to develop

simplified models for each of the three trajectory phases. These models give insight into the

form of the optimum trajectories and lead to faster, reasonably accurate, approximate solutions

of the optimization problem. The model for the aeroassisted, mid-course phase assumes that

speed and altitude are connected by a function (called the universal curve) that is determined by

balancing the difference between centrifugal and gravity forces by negative aerodynamic lift at
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the maximum lift-to-drag ratio [Section 6]. On the universal curve all flight motions are defined

by simple formulas. The final ascent phase is essentially Keplerian and for a fixed target it can

be determined by a solution of the Lambert problem. The boost phase is represented by a

simplified modelling of the staging parameters and simple functional representation of the flight

path angle [Section 7].
Another series of investigations explored questions concerning possible maneuvering of

the final stage when it is out of the sensible atmosphere. As has been indicated, it is essential to

reduce as much as possible the mass of the final stage. If attitude control is needed, this places

a premium on the simplicity of the control scheme. An implementation for a spinning stage,

which uses thrust modulation of a single side-thrusting control jet has been developed [Section

8]. It produces minimum-time attitude control maneuvers and realizes the required complex

feedback control law by a simple on-board computer implementation. Still another investigation

concerns out-of-the-atmosphere, fuel-optimal interception. Suppose, during the ascent of the

final stage, data on a specified target is transmitted to the stage and it is desired to intercept the

target within a given time and to minimize the mass of the fuel required to achieve the
interception. When the available engine thrust is large, a method for computing the required

thrusting program has been obtained [Section 91. Finally, suppose the thrusting capability of

the final stage is given and its initial state as it leaves the atmosphere is known. What is the set

of targets that may be intercepted by all possible maneuvers of the final stage? This question

may be answered if the reachable domain of the stage (the set of positions which can be reached
in a given time) is known. Considerable progress in characterizing the reachable domain has

been made, both for intermittent thrusting of high-thrust engines and for continuously thrusting

engines [Section 10].

2. Modelling the Multistage Interceptor

When the launch and target points have been specified, they determine a plane passing

through the center of the earth. Motion out of this plane consumes additional engine fuel.

Thus, to minimize the launch mass it is sufficient to describe the motion of the interceptor in the
plane. Specifically, there is no great loss of accuracy if it is assumed that all stages of the

interceptor are modelled as a point mass moving in a plane which contains the center of a

spherical, non-rotating earth with an inverse-square gravitational field. In dimensionless form

the equations of motion have the form

dR = Vsiny, dO _ VcosI
dr dR
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dA _ iAsin a+L+( )Co
dr VI M R R 2)Y

dV _ Acosa-D sin)' dM.y _ A
dr M R ' dr Isp (1)

where: ris dimensionless time, R is proportional to the distance of the stage from the center of

the earth, 0 is its polar angle, V is proportional to its speed, y is its flight path angle, M is

proportional to its mass, a is its angle of attack, A is a dimensionless thrust, and Isp is the

specific impulse of the engine. The dimensionless lift and drag forces are given in terms of the

dimensionless altitude H = R- I and V by

22 L 22
L P I p(H)V2 L  D = 7 lrP(H) V2 . (2)

where q7 is a constant, P is proportional to atmospheric density, and CL and CD are,

respectively, the lift and drag coefficients. These equations are highly nonlinear and illustrate the

complexity of the dynamics for each stage.

In the early phases of the research a variety of models of varying complexity were

considered for the functions P, CL and CD. See the progress reports [ 1-7] and papers [29, 30,

and in Appendix A]. Smoothness of the functions is vital to the proper functioning of the

minimization algorithms, so table-look-up schemes cause problems. It was learned through

experience that relatively simple models (exponential density and Jorgensen's formulas for lift

and drag) affected little the accuracy of the optimal solutions.

The control variables are the angle of attack a(r) and the engine thrust magnitude A.

The angle of attack generates the ascent program and is a function of time. For solid propellent

engines, the engine is either off or at full thrust. Thus, its time dependence can be represented

by two parameters: a coast time and a burn time. The thrust magnitude for each stage is

determined indirectly by the burn time and fuel mass for the stage. By making some

simplifying assumptions concerning the structural efficiencies of the stages, it is in turn possible

to obtain the initial stage masses and the fuel masses from the initial launch mass of the

interceptor and parameters oi which denote the ratio of the payload mass to initial mass for each

stage. Finally, the physical dimensions of each stage, which are necessary for computing the

lift L and drag D, are determined from the stage masses and some sizing assumptions. Thus,

the complete trajectory and vehicle design data are determined by the angle-of-attack program

for each stage, the initial launch mass of the entire interceptor, the burn and coast times, and

stage mass ratios ri. See the quarterly progress reports [ 1-7] and paper [33, and in Appendix

A] for full details.
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Given the angle-of-attack programs and the indicated data, it is possible by using the
equations of motion to determine the entire trajectory of the interceptor. At launch the initial
conditions of the interceptor are known: R(0) =1 and 0(0) specify the launch position in the
plane of motion (without loss of generality it is possible to set 0(0) = 0), )(0) = 90 degrees
(vertical launch), V(0) = 0, M(0) = initial launch mass. Thus, the first stage equations of

motion can be integrated to generate the motion of the first stage. After staging, the parameters
of the second stage, including its initial mass, are determined as has been described in the
previous paragraph. The variables R, e, V, and yare continuous across staging. Thus, their
initial values are known at the beginning of second-stage flight and again the equations of
motion may be integrated. Similarly, the entire trajectory is determined.

3. The Optimization Problem and Its Solution

The optimal interception problem is stated in terms of the model of the previous section.
The required data of the problem are: the total flight time of the interceptor from launch to
interception, the target range angle = &f, the target altitude = hf and the payload mass. The
optimization objective is to minimize the total launch mass. The free variables in the interception
are: the angle-of-attack programs for each stage, the coasting and burn times for each stage, and
the mass-ratio parameters. Thus, there are equality conditions which must be met (final

conditions on the interceptor altitude, range angle and mass) and a cost function to be minimized
(the launch mass). In addition, there may be constraints on the free variables, such as upper
and lower limits on coast and burn times and the stage mass ratios.

The above optimization problem is actually an optimal control problem with parameters,
where the control function is the angle-of-attack program a(r). Many approaches for solving

such problems (particularly single stage problems) have been discussed in the literature. See,
e.g., the discussion in papers [32, 33, and in Appendix A]. The difficulty in solving optimal
control problems is that the control function belongs to an infinite dimensional space and

computations must take place in a finite dimensional space.
Our initial approach to numerical solutions was to approximate a(r) by simple finite-

dimensional representations such as piecewise linear functions [5]. Thus, the optimal control
problem is approximated by an optimization problem with a finite number of parameters (the
original free parameters plus the parameters which determine the representation for a(r)).

While this approach is simple and very flexible and produced good results on certain problems.

it proved to have a fatal shortcoming. It often produced optimization problems which were very
poorly conditioned. For example, small changes in the angle of attack at the beginning of the
flight produced very large changes in the variables at the end of the flight. This sensitivity
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caused the minimization algorithm to fail or have very slow convergence. Thes. ifficulties are

well documented in our earlier progress reports [ 1-7].

The poor conditioning was eventually overcome by parameterizing a(,r) indirectly 0

through a direct parameterization of the flight path angle )(c). In this approach, d 'dr is

computed from the parameterized )(r) and then substituted, together with R, y, V and M, into

the third equation of (1). This equation then becomes through sin a and L an implicit equation

in a The indirect parameterization of a is obtained by solving the implicit equation. Note that 0

this eliminates the need to integrate the differential equation for dyld'r. Of course, the remaining

differential equations in (1) must be integrated as usual. When the indirect parameterization is

used, the entire trajectory is under more direct control. Changes in )(r) near the beginning of

the trajectory have very little effect on the terminal portions of the trajectory. Thus, the

sensitivity of the terminal constraints to the parameterization is greatly reduced. Another 0
advantage, perhaps less important, is evident at launch. Here, the differential equation for d)fdr

has a singularity because V = 0. With the y parameterization the differential equation is not

integrated and the normally troublesome singularity is circumvented. Other issues involving the

indirect parameterization such as imposing various smoothness conditions on the angle of attack

and pitch angle are discussed in the progress reports [1-71 and [32, 33, and in Appendix A].
A good deal of effort and experience was involved in setting up the numerical

optimization algorithms which were used to solve the finite dimensional problems resulting
from the y parameterization. The following is a brief review. The basic approach was an

augmented Lagrangian method. This method addressed directly the equality constraints. The 0
various inequality constraints on the problem parameters were handled indirectly by nonlinear

transformations, a technique which proved to be simple and reliable. The iterative descent

algorithm was of the BFGS type. At each iteration it requires the numerical evaluation of the

errors in meeting the terminal conditions and their partial derivatives with respect to all of the

parameters. Because of the highly nonlinear character of the optimization problem it was

necessary to compute these partial derivatives by finite differences. This process introduces

appreciable rounding errors, which at times affected the reliability of the optimization procedure.

Such difficulties were overcome by careful attention to numerical details, e.g., in the integration

of the differential equations at the staging times and in the use of smooth functions to represent 0

problem nonlinearities. Because of the finite-difference derivatives, each solution of a typical

optimization problem involved over 4000 solutions of the differential equations. The

corresponding computational time was about 2 hours on an Apollo DN 4000. Again, further

details are available in the progress reports [1-71 and [32, 33, and in Appendix A].
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4. Numerical Methods for Integrating Equations of Motion

It has already been pointed out that thousands of individual trajectory solutions are

needed to compute each optimal trajectory solution. For this reason there is a great deal of

leverage on selecting accurate and efficient numerical integration algorithms. Early in the

research program it was demonstrated that a single-pass, fifth-order Adams-Moulton (SPAM-5)

predictor-corrector algorithm provides much better computational performance than the

traditional fourth-order Runge Kutta (RK-4) algorithm [30, and in Appendix A]. Conventional

AM predictor methods consist of two integration passes per overall integration step, a predictor

pass and a corrector pass. In the single-pass version all state-variable derivatives are based on

the predicted values of each state variable. For this reason only one derivative evaluation is

required per integration step. Therefore the method runs approximately twice as fast as

conventional AM-5 integration and four times faster than conventional RK-4 integration. This,

combined with the dependence of dynamic errors on h5 rather than h4, where h is the integration

step size, accounts for the improved efficiency of SPAM-5 versus RK-4. There is, however, a

startup problem associated with predictor algorithms because of their dependence on past as

well as current state-varianle derivatives. For the SPAM-5 method this problem was solved by

using a special Gear RK-4 startup algorithm [30, and in Appendix A]. It was necessary to use

this startup algorithm whenever staging took place as well as initially when integrating the

trajectory equations.

Another major improvement in trajectory integration efficiency was obtained by using an

analytic formula rather than numerical integration to compute the velocity gained each integration

step due to engine thrusting. Only the much smaller effects of gravity, Coriolis, centrifugal and

gravity accelerations need to be integrated numerically. This also results in a substantial

improvement in computational accuracy.

The overall effects of the improvements in integration methods as described above can

be seen in Fig. 20, which shows the error in burnout position versus dimensionless integration

step size for a typical 4-stage ascent trajectory. The step size for the RK-4 data points in the

figure has been decreased by a factor of four over the step size actually used to take into account

the four passes per RK-4 integration step. Thus the reciprocal of the step sizes shown in the

figure is a true measure of the relative computational speed associated with each method. Plots

1 and 2 in the figure compare the accuracy of RK-4 and SPAM-5 integration when the angle of

attack a is used as the control variable in the optimization program. Clearly the SPAM-5 is

* roughly an order of magnitude more accurate for a given step size. Conversely, for a given

accuracy, the SPAM-5 runs approximately twice as fast. Plots 3, 4, 5 and 6 compare the
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accuracy of RK-4 and SPAM-5 integration when the flight-path angle yis used as the control
variable in the optimization program. Switching from a to ycontrol pro,> '-s an additional

three orders of magnitude of accuracy improvement for the same step size. This is mainly due
to the fact that dldt is no longer integrated. The figure also shows that analytic integration of

the thrust term produces an additional accuracy improvement of one to two orders of magnitude

for the same integration step size. In summary, the control and integration methods developed

for use in the trajectory optimization program have increased the speed and hence lowered 0
computational costs by more than an order of magnitude for a given trajectory accuracy.

5. Results of the Trajectory Optimization Studies

Many optimal intercept problems have been solved using the methods and models

reviewed in the preceding sections. In this section we present some of the results. The angle of
attack is parameterized indirectly through the flight path angle yas described in Section 3. For

each stage the parametric representation of y(r) is a linear function plus two exponential

functions. The pitch angle is constrained to have a continuous derivative; this guarantees that
the required pitching moment is bounded. A variety of problems have been solved where

coasting of the stages is allowed. In these problems the optimal coasting times are either zero or
so small that they have little effect on the optimal launch mass. For all the problems considered

here the coasting times have been set to zero. The minimum bum time for each stage is 10

seconds and the payload mass is 10 kg. Except for the results in Fig. 24, the specific impulse is 0
fixed at 300 seconds. Except for the results shown in Fig. 23, there are five stages.

Trajectory details for an example optimal aeroassisted trajectory are shown in Fig. 19.

The problem data are: time of flight = 360 seconds, target range angle = 45 degrees

(approximately 3100 miles), target altitude = 400 km.(approximately 250 miles), payload mass

= 10kg.. The staging times are apparent. With the exception of the fifth stage, the optimal bum

times are at their lower limits of 10 seconds. The resulting vehicle acceleration A/M is quite
high, ranging from about 20 to 70 g's. If the minimum burn time is reduced below 10 seconds,

even higher accelerations are obtained. The aeroassisted midcourse coasting phase begins at

burn out of the final stage and runs from about 53 seconds to 194 seconds. The slight drop in
V is due to the drag loss. There is little loss in speed after the exit from the midcourse phase.
The reason is obvious: the trajectory leaves the atmosphere quickly, so there is little

aerodynamic drag. Close inspection of (r) for 0 < r < 60 shows its linear-exponential

parameterization. If the smoothness constraint on the pitch angle is removed and a(r) is
allowed to be discontinuous at the staging points, the overall character of the trajectory is
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essentially the same and the launch mass is reduced by about 0.5 %. Thus, the smoothness of

the pitch angle does not seem to be a very stringent constraint.
Operational considerations may add further constraints to the interception problem. We

have, for example, considered two constrained versions of the problem in Fig. 15. They differ

only in the assumptions placed on the motion of the final stage after engine bum out; the models

for the earlier stages of the trajectory remain the same. The altitude vs. range angle plots are

shown in Fig. 21. Plot B is the optimal aeroassisted trajectory described in the previous

paragraph. In plot A, the final payload is constrained to move essentially outside the

atmosphere. Thus, after burn out, the trajectory for the final stage is a Keplerian transfer to

target interception. The out-of-the-atmosphere constraint is imposed by requiring the minimum

altitude of the Keplerian segment to exceed a specified altitude (100 km.). In plot C, the

payload is allowed to move through the atmosphere, but it is not aeroassisted, i. e., the angle of

attack is zero and there is no aerodynamic down lift. This avoids any increase in drag and

heating which may result from lift.

Table 1 gives numerical results for the three problems. As expected, the launch mass is

least for the aeroassisted case. For the zero-lift, atmospheric case negative aerodynamic lift is

also exploited, but because of the no-lift constraint on the payload it occurs together with engine

thrust in the final stage. This accounts for the long bum-time of this stage; it allows more time

for the negative aerodynamic lift to act. In the Keplerian case, the altitude constraint leads to a
very large launch mass because it essentially eliminates any effective utilization of negative

aerodynamic lift. The Keplerian solution does have a potential operational advantage. Since the

trajectory is essentially outside the atmosphere, communication with the payload is not blocked

by atmospheric ionization.

Figs. 22 through 24 illustrate the effect of key parameters on optimal launch mass. Each

point on the curves is the result of an optimal solution. Except for the results in Fig. 22 the

trajectories are aeroassisted. Note that the target altitude is 200 km.; this a more demanding

intercept condition than the 400 km. of the preceding problem. Fig. 22 shows the relative

performance of optimal aeroassisted trajectories and optimal trajectories where aerodynamic lift
is not allowed during the coasting of the final stage. The advantage of the aeroassisted

trajectories is greater for shorter intercept times. For both types of trajectories the launch mass

grows very rapidly as the flight time approaches 320 seconds. As explained in the preceding

paragraph, aerodynamic lift is actually used in the midcourse phase. It is just used less

efficiently because it must occur while the engine is thrusting. Fig. 23 shows the difference

between 5 and 6 stage aeroassisted interceptors. The 6 stage interceptor has a decided

advantage for the shorter flight times. Fig. 24 shows the affect of reducing the specific
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impulse. The 10 second reduction increases the launch mass by over 40 % for the shorter flight

times. 0

Additional solution results for the aeroassisted case suggest other trends. If all other

parameters are fixed, the optimal launch mass varies little if the range angle and intercept time of

the target vary in direct proportion. Increasing the axial drag coefficient, CA , by 0.02 increases

the launch mass by about 10 %. Increasing the mass density of the stages by 50 % decreases

the launch mass by about 6 %. More accurate models of atmospheric density have very little 0

effect on the launch mass.

6. The Mid-course Universal Curve

The aeroassisted trajectory in Fig. 19 has an obvious mid-course segment on which the 0

final payload coasts for an extended period of time until it begins its rise to the target. On the

segment there is a negative aerodynamic lift and the path is nearly horizontal. Such segments

have been observed on all optimal aeroassisted trajectories where performance requirements are

high, i.e., the time of flight is small, the target range angle is large and the target altitude is

small. It has been possible to model these mid-course phases accurately by a single universal

curve which relates altitude and speed. This unique relationship is obtained by balancing the

difference between centrifugal and gravity forces with negative aerodynamic lift and minimizing

the drag losses by choosing the angle of attack which maximizes the lift-to-drag ratio. It also

follows that the time-dependent motion of the payload on the universal curve has a universal 0

character.

The full derivation of the universal curve and its consequences is quite lengthy. Papers

[32, 33, and in Appendix A] contain the details. Here we indicate the main results. The

required balance of forces on the nearly horizontal trajectory is achieved by setting the normal

acceleration, Vdydr, and yequal to zero in (1). The result is the universal curve, an expression

which relates the altitude and speed:
V3 IH-l2[ (I+H) P(H)]-1/2.  (13)

By using a local exponential representation for the density and making a very accurate

approximation a simple formula for the universal curve is obtained:

V = G(H)= (I -3 e-)-. (14)

Along this universal curve there are drag losses and V must decrease. This in turn causes H,

0, y and a to depend on r. By using the equations of motion (1) and going through some 0

further approximations it is possible to integrate them and obtain simple formulas for the
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dependencies. Nondimensional plots of the functions are shown in Fig. 25. The variable x is

given by a linear transformation of lr. The ranges of variables which are shown are adequate for

any reasonable target conditions.

The accuracy of the formulas has been found to be extremely high. The formulas have

been used in many of our numerical solutions of the minimum launch mass problem. This

reduces the number of parameters needed to represent the angle of attack program and improves

* the conditioning of the optimization problem. The result is a considerable saving in computer

time. Moreover, the normalized functions in Fig. 25 give a clear picture of how H, 0, y and V

vary during the mid-course phase.

7. Performance of Multi-stage Rocket (Semi-analytical Approach)

For a system of n stages, if the specific impulse IP and the structural efficiency ratio k,

are the same for all stages, then a known optimal property is that the staging ratios are the same.

In this case it can be shown that the ratio of the payload mass to the initial mass is

m P V totalmo -(1l+ k)exp -npgCS - ks] (15)

where a is the average angle of attack during the ascent and the total velocity is

Vtotal = Vburnout + AVg + AVD (16)

Here
0 tf tf

AVg f g sin y dt, AVD= f (D/m) dt (17)
0 0

are the velocity losses due to gravity and drag acceleration, respectively. The following
procedure is used to obtain AV, and AVD:

Based on a typical variation of the flight path angle y as discussed in [32, 33, and in Appendix

A], we assume that

sin , = e (18)
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where the time constant 'ris to be selected to satisfy the final altitude. Then AV, is obtained by a

simple quadrature, while we have an integral relation for the current velocity

t

V() =f(t) - f (D/m) dt (19)

0

wheref (t) is a known function. We start the computation with D = 0 to generate the elements
of the trajectory in altitude and velocity. These elements are used to evaluate AVD for the next
iteration. Usually AVD tends to its final value after 4 or 5 iterations.

This scheme has been used to compute the boost phase. Compared to the exact optimal

solution it provides excellent agreement.

For the overall aeroassisted interception trajectory, we assume that the coasting phase is
strictly at constant altitude and the last phase for ascent to intercept is strictly in the vacuum.
Explicit solutions for these phases are available. Together with the simplified program for the

boost phase, the intercept trajectories have been computed using the data in [32, 33, and in
Appendix A] and the accuracy obtained is such that the error is between 5 and 15%. These

results are shown in Figs. 26 and 27. They can be compared with the exact results in Figs. 23

and 24.

8. The Attitude Control Scheme

Another portion of the research study has been concerned with the investigation of
simple, innovative means of attitude control of the final homing interceptor stage when it is out

of the atmosphere. To minimize weight and complexity, a time-optimal attitude control method
which uses only a single small control jet has been studied. The method assumes that the final

stage is spinning about its x body axis, the axis of axial symmetry. The main rocket engine is
also aligned along the x body axis and is continuously thrusting. Through control of the

attitude, the main-engine thrust is pointed in the direction required to bring the trajectory onto a

collision course with the target. The single control thruster is aligned along the direction of the z
body axis and therefore at right angles to the spin axis x. This small control jet can then provide
a pitching moment about the y body axis. Attitude control is achieved by turning on this

thruster for only a fraction of each roll revolution of the spinning missile. Since no moment is

applied about the x axis and since the inertia ly = I, due to axial symmetry, o&, the x component

of missile angular velocity, remains constant and equal to its initial spin rate.

Each discrete change in attitude requires at least two thrusting pulses from the control 0
jet. In the two-pulse case, the first pulse produces an increment in angular momentum
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perpendicular to the spin axis x. The second control-jet pulse is applied half a role period later

to cancel the angular momentum increment perpendicular to the spin axis, which has now been

changed in direction by the desired attitude angle increment. The size of the incremental change

in attitude angle can be varied by changing the duration of each control-jet pulse.

The attitude control problem is described by a set of five nonlinear state equations

involving the rates of change of two transverse angular velocity components, Coy and COz, and

three Euler angles V, and 0. It turns out to be more convenient to define transformed Euler

angles such that the final desired pointing angle is represented by 0 = V = 0. Solution of the

time-optimal control problem requires the integration of ten nonlinear differential equations (five

state equatioas and five costate equations) with trial initial conditions on the costate variables.

The polarity of one of the costates determines whether the control thruster is turned on or off.
* Thus the solution consists of the control thruster turn-on and turn-off times which take the

spinning missile from its initial state to its desired final state (the prescribed pointing direction as

given by 0 = 0 and V = 0, with wty = o = 0) at the final time Tf. To avoid the difficulties

inherent in the many iterations needed to solve each case for this type of optimal control

* problem, two alternative approaches have been successfully developed. For details see

references [35, 36, 37, and in Appendix A].

The first approach is limited to the case where only two control thruster firings are

needed. As noted above, the first thruster firing is used to accelerate the rocket toward the

desired final state, the second to brake the motion so that the stage arrives at the desired pointing

* direction with zero transverse angular velocity. T 1, T2 , T3 and T4 (= Tf) are defined as the

first turn-on, first turn-off, second turn-on and second turn-off times, respectively. Starting

with given initial conditions, the five state equations of motion are integrated numerically for

trial values of T, and T2. It turns out that T3 and T4 can be expressed as analytic functions of

the state at T2 such that the final transverse angular velocity will be zero. A gradient-type

algorithm is developed which iterates on T1 and T2 until the final Euler angles 0 and V at 74 (=

Tf) are equal to zero within a prescribed E. This approach does not require integration of the

costate equations and has the further advantage of only requiring iterations on two parameters

(TI and T2). Based on ,his approach a table of two four-vanable functions, one for the first

turn-on time T 1, the second for the first turn-off time T 2, can be constructed. Starting with

arbitrary initial conditions as entries to the table, T1 and T2 are determined by table lookup and

linear interpolation. For times greater than T2 the missile states become new initial conditions

for the same control law, as defined by the table entries. Then the newly determined T1 and T2

values are in fact equivalent to the original T3 and T4 values associated with the two-thrust

maneuver. Simulation runs of an interceptor stage using a control law based on this function-

generation scheme have demonstrated near time-optimal performance. This function-generation
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method is especially suitable for on-board microprocessor implementation using current and

projected VLSI memory chips.

In the second approach the state and costate equations are solved backwards in time

from the final time Tfusing numerical integration. Each backward integration is started with the

prescribed final states and trial initial conditions for the five costates. Since one of the costates

can arbitrarily be set equal to 1, this is equivalent to four adjustable initial conditions. Every

numerical solution generates an optimal control law. From each backward-time solution the set

of initial conditions for which the observed on-off control law is optimal can be determined.

Time-optimal switching times which span the entire required space of initial states in forward

time can be generated by repeating the backward-time solution for different values of the four

costate initial conditions. These results can in turn be used to generate the same type of four-
variable function tables for turn-on and turn-off times T1 and T2, as described above in the first

approach. But in this case we are no longer restricted to the two-thrust solution, as in the first

approach. Here the time-optimal control law can consist of any number of thruster firings, as
needed to reach the final pointing state. Thus an arbitrarily large set of initial states can be

handled by the function tables.

To summarize, a practical scheme has been developed for time-optimal control of a

spinning interceptor which uses only one control thruster and is particularly compatible with

VLSI memory technology. Although developed for attitude control of an interceptor rocket out

of the atmosphere, the method has the potential of being combined with the boundary-layer
injection scheme for control at hypersonic speeds in the atmosphere, which has been the subject

of Part I of this final research report.

9. Minimum Fuel Interception with Time Constraint

This analysis applies to both the case of ground-launched interceptor and space-based

interceptor. We assume that at a certain time to, called the acquisition time, the trajectory of the

target as defined by the position vector rT(t) is known. Let r0(t) be the current position vector of

the interceptor. It is proposed to make the necessary correction to r(t) with minimum fuel

consumption such that r(t) = rrtf) for a certain final time tf such that to <tf <t, where t,,. is a •

prescribed upper limit, (Fig. 28).
We consider the general case of three dimensional flight in the vacuum about a spherical

earth. The engine thrust is assumed to be sufficiently high such that the velo'ity change is

impulsive. Then by the maximum principle, the impulse AV is parallel to the primer vector Pv

which is the adjoint vector associated to the velocity vector. Since the function pv(t) can be
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expressed explicitly in terms of elementary integrals, we can write the set of necessary

conditions for optimality. They consist of:
- The kinematic relations for transfer between orbits, including the Lambert solution for

prescribed time of flight.
- The optimality conditions: Pv parallel to AV, and pv = llpl = I at the time of application of

the impulse.
- The transversality condition which expresses the fact that the final velocity is free in the

case of pure interception. This condition is

p,. (V. - V) = 0 (20)

and it shows that at the final time the relative velocity is orthogonal to the adjoint vector p,

associated to the position vector.

Finally, there is the condition

Pv(t) . 1, t E [to,tf] . (21)

The procedure for the computation is as follows:

Use one impulse applied at the initial time to to find the solution satisfying all the

boundary conditions, including equation (20). Then we check condition (21). If it is satisfied,

then the trajectory computed is optimal. If condition (21) is not satisfied and if Pv(to) > 0, the

unique impulse must be applied at a certain time ti >to after an initial coasting phase to bring the
interceptor to a more appropriate position to initiate the change in the trajectory. This time t, is

computed with the additional condition Pv(t,) = 0. If the condition (2 1) is not satisfied during a

time interval (t,,t2) where to<t,<t2<t, then a mid-course impulse, applied at a time t,, should be

applied. The trajectory must be recomputed using two impulses AV, and AV2, will all conditions

satisfied.
All the equations involved as presented in [31, and in Appendix A] are given in explicit

form and several numerical examples are presented.

10. Reachable Domain for Interception at Hyperbolic Speeds

As discussed in previous sections, for a short time interception of an ICBM at low

altitude a multi-stage earth-based interceptor must accelerate to hyperbolic speed. In practice, at

a time to , about 2 to 3 minutes before the intended interception time t, revised information about
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the trajectory of the target rr(t), may dictate a correction in the trajectory of the interceptor, from
the reference nominal trajectory r0(t) to the actual trajectory r(t). Then, for a given fuel potential

for the last interceptor stage it is necessary to assess the possibility of a successful interception.

This fuel potential is conveniently expressed in terms of the total characteristic velocity AV,

available for the maneuver.

By definition, the reachable domain at the time t is the set of all points P attainable by the
interceptor, using all the available AVo. From [31, and in Appendix A], it is known that the

largest set for the points P is obtained by applying the maximum impulse at the acquisition time

to. For any point P inside this domain, interception can be achieved with a smaller impulse.
We have derived the exact equations for the computation of the reachable surface

S(AV,t) which is the boundary of the reachable domain for a given AV. For small AV the
equations which generate S(AVt) can be linearized. It is then seen that the reachable surface is

an ellipsoid and it is approximately a sphere for short time of flight, (Fig. 29). Properties of
this surface and its mathematical characterization were presented in [35, and in Appendix A].

The condition for interception may be expressed in terms of a capture function F, for
which an explicit formula has been derived. Let Art(t) = rT - rp,-(AXT,AYTAZT) be the relative

position between the reference point Po of the interceptor on its nominal trajectory (without
correction) and the target T. Suppose

F (AxrAYTAzr,t) < IhAI/II2

is satisfied for all t e [t,t 2] , where IAVII is the characteristic velocity available. Then

interception is possible for any t in [tl,t 2].

The concept of reachable domain can also be used to determine the requirements for

defense of an area on the surface of the earth which may be the intended target of ICBMs.

III. Suggested Future Work

Based on the work done under this contract, the following extensions to the work

completed and new studies are suggested as areas of future work.

I) Aerodynamic Control Using Gas Injection Into the Boundary Layer

1) Inclusion of equilibrium chemistry (dissociation and reaction) in the Navier- •

Stokes code. The stability of the shear layer is sensitive to the temperature
distribution in this layer, which is affected by chemical reactions which may

occur. Frozen and equilibrium flow calculations allow these effects to be

bracketed.
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2) Improvement of numerical code efficiency so as to handle separated flows

economically, in terms of computer time. This will involve implementation of

implicit time-marching or multi-grid relaxation, or both.

3) Definitive study of strip blowing, including both analytical and numerical

studies, and including cases of simple and multiple strips.

4) Study of shear-layer stability in hypersonic flows, both analytically and

numerically. Little previous work has been done on this problem, which must

be understood before extensive practical use can be made of the injection of

gases in the boundary layer for aerodynamic control.

5) Numerical study of temporal effects associated with stopping and starting

* blowing. Steady state examples give satisfactory results. Any problems

associated with the unsteady processes when starting or stopping the blowing

bear upon the feasibility of using surface blowing for control purposes,

especially if a rotating vehicle with a control which is on only during part of the

rotation is consicdld. This study will involve extending the temporal accuracy

of the codes.

6) Study of effects of increasing altitude, to a point where free molecule flow

exists; calcuation of jet forces needed for vacuum conditions (no boundary

layer). It is not possible to cover the whole range from continuum to vacuum

conditions computationally.

7) Consideration of three-dimensional, axially symmetric body in hypersonic flow

at an angle of attack.

II) Combined Atmospheric and Exo-atmospheric Attitude and Trajectory Control

1) Extension of the research on attitude control out of the atmosphere to integrate it

with the research on generation of aerodynamic forces at hypersonic speeds

using boundary-layer injection (Part I).

2) Extension of the time-optimal control laws developed for a spinning missile with

an on-off thruster to the continuously-thrusting case, where hot gas is switched

back and forth from one nozzle to another. This single control scheme has the

advantage that it can be utilized both for attitude control in the atmosphere, using

boundary-layer injection, and for control out of the atmosphere.
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3) Modification of the thrust-switching scheme to provide high-resolution attitude

control by means of pulse-width modulation of the control-jet switch.

4) Implementation of closed-loop control with high sample rates by storing only

one-bit switch position data in the multivariable function table for the time-

optimal control law, based on the desired attitude and current measurements of

missile attitude and attitude rate. The multivariable function scheme for storing

control-jet switch times, as developed in the research to date, uses on-line table

lookup with linear interpolation to determine thruster turn-on and turnoff times.

The proposed new scheme offers possible advantages over the table-lookup

scheme. It is potentially simpler from a hardware point of view and achieves

direct closed loop control rather than partially open loop control.

5) Develop minimum-fuel thruster control laws.

6) Extend the parametric studies of trajectory optimization with the support of the

simplified trajectory optimization program developed during the last six months.
This research would be used to provide performance requirements for the

attitude control schemes described above.
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Table 1. Numerical Data for Optimal Trajectories in Figure 1

Burnout conditions for 4th stage

TQ of Solution Launch Mass hkg flan) Ve I (deg) tlsw

Aeroassisted 18,990 58.3 1.68 2.2 3.2 40.6

Zero Lift Atmospheric 23,070 57.0 1.89 2.5 3.5 42.5

Keplerian 50,720 64.6 1.82 5.8 -1.6 75.2

Coasting time Burnout conditions for 5th stage
41 between 4th

Tyue of Solution a 5 V O.(Dg) y t~r(c)

Aeroassisted 0 63.7 2.11 3.7 0 52.6

Zero Lift Atmospheric 0 66.5 1.96 24.0 0.005 201.9

* Keplerian 90.6 127.8 2.10 19.5 -4.7 182.0

0
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Fig. I Qualitative sketch of wedge flow field with weak or strong blowing and weak or
0

strong interaction. (Speckled regions are viscous layers.)

42 •



0U

compoent. epeatr Tan resrep

.. I. *43



~~ C

z- 0

a C)
tI

CD *L .

-Ca
0.73

0% 5
t~'too E.

C'm US

-D >%

t*-I-

* cit

(UC

44



1.00

U

or

TxlO

0.00
0.0 10.0 20.0

0.00020
(b)

U /

or - °

STxlO 4

-4.

0 0.00000 ,
0.0000 0.0100 0.0200
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Fig. 5 Surface pressure p-po vs. x for various rates of air injection.
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temperature air injection. The injected air temperature is equal to the free-stream air
temperature.
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Hypersonic viscous interaction with strong blowing

By A. F. MESSITER AND M. D. MATARRESE

Depaurment of Aerospce Engineering, The University of Michigan,
Ann Arbor, M 48109-2140, USA

Solutions are obtained for hypersonic viscous interaction along a flat plate in the presence

of strong boundary-layer blowing, with inverse-square-root injection velocity, for laminar

flow over a cold wall and with a power-law viscosity-temperature relation. In the strong-
interaction region, self-similarity is preserved if the blowing is such that the thicknesses of

the inviscid shock layer, viscous shear layer, and inviscid blown layer all have the same

order of magnitude. The weak-interaction region is also considered, and an approximate

interpolation is used to join the solutions for the surface pressure. Certain difficulties in

asymptotic matching are discussed, and the extension to flow past a thin wedge is shown.

0

1. Introduction

Drastic changes in the pressure variation along a boundary layer can occur in the

presence of strong surface blowing, especially if the blowing velocity is large enough that

the boundary layer is completely "blown off' from the surface. In that event a region of

nearly inviscid injected fluid is present between the thin viscous layer and the wall, with the

pressure distribution determined through an interaction with the external flow. For

* subsonic or for incompressible laminar flow asymptotic solutions beyond blowoff were

given by Kassoy (1971) and by Klemp & Acrivos (1972). For supersonic speeds Cole &

Aroesty (1968) considered strong blowing in limiting cases such that the thickness of the

blown-off shear layer could be neglected.

0 Among other studies, only a few were primarily concerned with obtaining asymptotic

solutions for strong blowing. Kubota & Fernandez (1968) solved the boundary-layer

equations for compressible laminar flow in the limit of large mass injection. Wallace &

Kemp (1969) followed Cole & Aroesty (1968) in considering examples for which the

shear-layer thickness can be neglected. Smith & Stewartson (1973b) treated a supersonic

boundary layer with uniform blowing that starts at a point downstream of the leading edge,

0



choosing the velocity to have an order of magnitude consistent with triple-deck scaling. A

good summary of this and other earlier work was given by Smith & Stewartson (1973a). 0

At hypersonic speeds interaction effects are present even in the absence of blowing. If

a flat plate is placed in a uniform hypersonic flow, the boundary-layer displacement effect

causes the appearance of a shock wave. Far enough downstream the pressure change

across the shock wave is small ("weak interaction") but in a region further forward the

pressure ratio across the shock becomes large ("strong interaction"). At points still closer

to the leading edge, all relevant distances are of the same order of magnitude, so that the

boundary-layer approximation fails, and the distinction between boundary layer, inviscid

shock layer, and shock wave disappears ("merged-layer regime"). These effects have 0

been discussed in the books by Hayes & Probstein (1959) and by Stewartson (1964);

additional details concerning asymptotic matching of the strong-interaction solutions have

been given by Bush (1966) and by Lee & Cheng (1969).

Self-similarity for hypersonic strong interaction is preserved for surface blowing of a 0

power-law form consistent with the usual interaction solutions. Li & Gross (1961) gave

numerical results for the strong-interaction problem with weak blowing such that the

boundary layer is not yet blown off. Of interest in the present work is the case of larger

blowing velocity such that the injected gas occupies a "blown layer" having thickness of the •

same order as the thickness of the viscous shear layer and the inviscid "shock layer"

between the viscous layer and the shock wave. The shock layer is described by

hypersonic small-disturbance theory (Van Dyke 1954), the blown layer by "inviscid

boundary-layer equations" and the viscous layer by the usual boundary-layer equations, all

in self-similar form. In the case considered here, the injected gas is taken to have density 0

of the same order as the density in the undisturbed external flow, whereas the density in the

high-temperature viscous layer is much lower. Solutions are described for each of the

three layers, weak interaction further downstream is discussed for the same wall

conditions, and the extension to wedge flow is shown. 0

2. Formulation

A semi-infinite flat plate is placed in a uniform hypersonic flow with velocity u,., 0

pressure p., density p., temperature T., Mach number M., and viscosity coefficient P.,..

Coordinates X and Y are measured along and normal to the plate, respectively, with origin

2



*

at the leading edge. The nondimensional velocity u=(u,v), pressure p, density p,

temperature T, and viscosity coeffient i are all referred to their undisturbed values. The
* viscosity is assumed to depend on the temperature through the power-law relation g=To,

where 1/2<o<1; the case wil is also considered briefly.

The nondimensional continuity, momentum, and energy equations for steady flow can
be written

div pu = 0, (2.1)

pu'Vu + (yM.. 2)-IVp = Re"I div C, (2.2)

pu.V(H]2) = Re-1 div (,c u - q), (2.3)

0 where y-cp/cv is the ratio of specific heats; H is the total enthalpy, nondimensional with

u.2/2; the coordinates are x=X/Xr and y=Y/Xr, with Xr a reference length still to be
defined; and Re=u..Xv. is the Reynolds number, with v..=l.,/p... The stress tensor is
,r = 21w + XI div u, where X is the second viscosity coefficient, nondimensional with p..

*0 e is the rate-of-strain tensor and I is the identity tensor. The heat conduction vector is
q = -VT/((y-1)M.. 2pr), where Pr is the Prandtl number. For simplicity the specific

heats are taken to be constant; the injected gas is considered to be air; a perfect gas is
assumed, so that p=pT; and the Prandtl number is taken equal to one.

The reference length Xr is chosen such that for X*Xr the boundary layer has only a

small effect on the external flow ("weak interaction") whereas for X4Xr the changes in
pressure are large in comparison with the undisturbed pressure ("strong interaction"); that

is, the shock wave is very weak for X*Xr but very strong for XNXr. For weak interaction
0 the shock wave has slope - I/M., whereas the streamline inclination resulting from the

boundary-layer displacement effect is Q{(M. 1 +(/1Re)(Xr/X)1/2}. Requiring the latter

expression to be much smaller than 1/M.. when X*Xr leads to the choice
Xr=M.g4+2'v/u.., and so the two large parameters M. and Re are related by Re= M 4+ 2 o.

The coordinates then are defined by0

x =X/Xr, y=Y/Xr, Xr=M. 4 +2 mv'/u.. (2.4)

The usual hypersonic viscous interaction parameter X, based on a distance X, is

proportional to x-1/2. Solutions for the strong- and weak-interaction regions are found by
* considering limits of equations (2.1) through (2.3) as M.-- and x-40 or x--

respectively.

3
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It is convenient to think first in terms of the dividing case, represented by equations
obtained in the limit as M.-+,* with x fixed. In this case the Mach number based on
velocity normal to the shock wave is neither close to one nor large. With strong blowing
the boundary layer is blown off the wall as a viscous free shear layer, again described in
the limit by the boundary-layer equations. An inviscid shock layer between the shock
wave and the shear layer is described in a first approximation by the hypersonic-small-

disturbance equations. The injected gas in a low-speed region below the shear layer is also
described asymptotically by inviscid-flow equations. Solutions in adjacent regions are to
be joined by appropriate asymptotic matching.

The nondimensional stream function y (referred to p..u.,X) is defined by

V1y = Pu, Wx f -pv. (2.5)

It can be seen that the mass flow V will have different orders of magnitude in different

parts of the flow. For x=O(l), the shock wave is located at y=O(l/M.) and has slope
O(1/M.); the mass flow crossing the shock wave is 4=--O(1/M.); and in the inviscid flow 0
behind the shock wave p-1=O(1), p=0(1), and T=0(1). The viscous shear layer has high

temperature T=O(M. 2), because some of the kinetic energy is converted to thermal energy,
and low density p=O(1/M. 2 ), because p=pT. If diffusion and convection terms are
required to be of the same order for X=O(X), where Xr is defined by (2.4), the shear-layer _
thickness is 0(1/M.), and since u=0(1) the mass flow in the shear layer is V=O(1/M. 3).
In the blown layer adjacent to the wall, the density p is 0(1) for the case to be considered,

and for p-i =O(1) the momentum equation then gives u=O(1/M.). If the blown-layer
thickness is also to be O(1/M.), the mass flow must be AV=O(l/M. 2). The reference
streamline is chosen such that W>O for air from the free stream and 4i<O for the blown gas; 0
the streamline 4f=O lies within the shear layer.

It appears helpful to introduce notation which takes into account the different orders of
magnitude in the different flow regions. For this purpose a hat, bar and tilde will denote
variables in the inviscid shock layer, the viscous shear layer, and the inviscid blown layer,

respectively. The corresponding stream-function coordinates are, respectively,

V=M-N, V=M-.3', fM.,2. (2.6)

In the shock layer, the dependent variables are expanded in the form

4
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v(xW) + (2.7)
A A

p-P(x,iy) + ..., (2.8)
A A

p=p(x,) + ... (2.9)

y=,A ly(xV) + ...,(2.10)

for 0<"o , where A is the value of A at the shock wave; also u=1+..., and f= ^  n

the shear layer,

u=i(x,j) + ... , (2.11)

p=M,2(x,)+ ... (2.12)

T=MJ2 T(x,i) +..., (2.13)

y=M (x) + ... , (2.14)

and P 9p T. The range for i is * 0 (x)<*<o, where 0(x)<O is to be determined. In the

blown layer,

u=MA'l (x) + ... , (2.15)

v=M.'2(x,*) + ... , (2.16)

p=P(x,*) + ... , (2.17)

T=1(x,*) + .... (2.18)

y=M..'(x,*) + ... , (2.19)

and P= . The range for * is *w()<*<O, where *w(x) is the value of * at the wall and

• is specified. The combined displacement effect of the viscous layer and blown layer

implies an effective thin body shape

y=M..'IA(x), A(x)=A(x)+A(x), (2.20)

where the functions A(x) and A(x) represent, respectively, the contributions of the viscous

and blown layers, to be determined. When M. is large, omitted terms are small in

comparison with terms retained in each of the expansions (2.7)-(2.19). Formulations for

the strong- and weak-interaction problems are obtained by further expansion of (2.7)

* through (2.20) as x--0 or x-- respectively.



0

In the strong-interaction limit x--+O, the hypersonic small-disturbance equations possess

a family of self-similar solutions corresponding to flows past thin power-law bodies. The
viscous-layer equations likewise possess a family of self-similar solutions. If the

solutions in the two regions are required to match correctly, it is found that the similarity

variable (for y) must be M.y/x3/4 and the pressure in the viscous layer is 5pIlx"1/2 (e. g.,
Stewartson 1964). In the presence of surface blowing the self-similarity is preserved if the
blowing velocity and wall temperature are such that the thickness of the blown layer is also
O(M.'x 3/4). The effective body shape A(x) then has the form

A(x)-Aix 3 /4 , A1=; 1+A1, (2.21)

where ; 1 and A1 are constants to be determined, and the contributions of the viscous and

blown layers are a(x)-ax 3 /4 and A(x)-A1x 3/4 . It also follows that the shock-wave slope
dY/dX is no longer small when x--O(M. -4), i. e., when X=O(M.2Cv./u,.); a strong-

interaction solution thus describes the flow region M.,44x. 1. The various flow regions

are indicated in figure 1.

For strong interaction it is seen, with the help of the shock-wave jump conditions, that
the mass flow in the inviscid shock layer is V=M. 1 ---O(M.-Ix 3/4). In the shear layer,

the temperature is T-M.2'=O(M., 2) and the density (from the perfect-gas law) is p-M. 2
=O(M.-2x'1/2); the velocity is u=O(1), and so the mass flow is much smaller, namely

W =M. 3*=O(M.'3xl/ 4 ). In the case to be considered here, the wall density is taken to be

p,,w-Pw=O(l), and the Bernoulli equation for compressible flow gives u-M.'fi

=O(M,=1 x' 1/4) for the injected gas; the required mass flow AV=M. * =O(M.' 2 x1/2 ) in the

blown layer is therefore provided by a blowing velocity vw-M.-2Vw =O(M.- 2 x' 1/2). It
follows, for example, that the mass flow pwvw at the wall is smaller than the mass flow
p.u..d(A/M.)/dx through the shock wave by a factor O(1/M.), and that the wall shear
stress (gt u/ay)w is smaller than the momentum flux pwvw2 at the surface by a factor

O(M., 2n ). The three different mass flows suggest the three similarity variables (for W) -

needed for the inviscid shock layer, the viscous shear layer, and the inviscid blown layer:

A A

= 14', t=ij/X1 ,4 , &=*j/X 1/. - (2.22)
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The choices for the blown layer are, however, not unique. The required conditions

(mass conservation, perfect-gas law, Bernoulli equation) are found to be satisfied if
iw* =(Const.) &' "1/2, where Mw=MvwTw" /2 is the Mach number of the injected gas at

the surface. Another possible choice that would satisfy this requirement is Tw=const. and
vw=M, "2 -lw x-1/4, giving a mass flow O 3(M,'2x1/4 ) that has the same x-dependence as

the mass flow in the shear layer. This case corresponds more closely to the flows

considered by Kubota & Fernandez (1968) and Li & Gross (1961). Although the wall

temperature then would not match directly with the higher temperature in the merged-layer

regime, the solution methods are otherwise the same, with some different details for the

blown layer and for the final result relating surface pressure and blowing velocity.

* The layer thicknesses and mass flows for strong interaction corresponding to (2.21)

and (2.22) are summarized in figure 2. Solutions for the three regions can be obtained

separately, each leading to a relation between pressure and a layer thickness, as shown in

§3. First-order matching conditions then allow the results to be combined so as to

determine the relation between surface pressure and blowing velocity. Some numerical

results are described in §4.

3. Solutions

3.1 Inviscid shock layer

In a first approximation the inviscid flow at high Mach number past a thin two-

dimensional body is equivalent to one-dimensional unsteady flow in a plane slab of fluid

passing over the body at the undisturbed speed, and is described by the hypersonic small-

disturbance equations (Van Dyke 1954). In terms of independent variables x and A the

continuity, momentum, entropy, and streamline equations become, respectively,

* (1/)x - +... = 0, (3.1)
VX + + . 0, (3.2)

A X A A A(3)

p- (Yp/P)PX + .. = 0, .3

o -(1/)+... = 0. (3.4)

7



If the shock wave A= A5 (X) is very strong, so that A., *1, the corresponding jump

conditions across the shock ae

PS = (Y-)/(Y-) + ... (3.5)

2 s2 (3.6)

vs 24s'/(+ + ... , (3.7) 0

A A

Ys = Ws, (3.8)

where A.=--(x, As), etc. As A -O, at the inner "edge" of the shock layer, A--iA(x) and
Av--4A'(x).

In the limit as M..-.-, x-W, and A--40 such that M.44x--+- and = /x314 is held

fixed, the functions appearing in (2.7) through (2.10) can be expressed in self-similar form

by

A .1I/4 A= Vl(b) + .- ,(3.9)

= A) + .. (3.10)

A A A

=P A (4 + ...,(3.11)

-- x3/4 1(b) + ... (3.12)

Substitution into (3.1) through (3.4) then provides a system of first-order nonlinear

ordinary differential equations, subject to boundary conditions found from the shock

relations (3.5) through (3.8). The entropy equation can be integrated to give a relation
A A

between p Iand PI:

( A Y Y A -/

Numerical integration of the remaining equations for y= 1.4 , with Y I"_+A and v I-+3A1 /4 as

-+O, leads to the values

=()/AI 1.1194, A /Yis 0.5912, (3.14)



which agree with values given by Brown & Stewartson (1975) and by Li and Gross
(1961). Since p--constant as -+O, (3.13) shows that V(,7 as Solutions

for the viscous and blown layers are now needed to determine AI in terms of the blowing

velocity at the surface.

3.2 Inviscid blown layer

Solutions for the blown layer follow directly from the results of Cole and Aroesty
'1968). Since the layer is thin, in a first approximation the pressure is a function only of x

and the differential equations are "inviscid boundary-layer equations":

Pimx + YIP. + .. = 0, (3.15)

*i + ... =0, (3.16)

Ox - (7Y/P)Px +... = 0, (3.17)

Y - (P)- =0, (3.18)

where =(x). The mass flow at the wall is irI=-w(x), where diw=-Pwvwdx; the inverse

relationship x=xw(NI), where dxw=-(Pww)-'d*, identifies a streamline by the location at
which it leaves the wall. At the wall the density Pw and the blowing velocity Vw are to be

specified, and can be expressed by evaluating P and V either at x and *w(x) or at Xw and
i(Xw). The latter interpretation is needed in most of the following, so P, and Vw will

denote quantities which are constant along streamlines. Integration of the entropy and
momentum equations leads to solutions for P and 5 in terms of x and xw:

P= w +... (3.19)

2 w + ... , (3.20)

where P=P(x) and Pw=P(xw); Tw=Pw/pw is the wall temperature, as a function of Xw.

If now x--O with =,/x10 2 fixed, where w< <o, the solutions can be expanded in the

* form

9



xl + .-., (3.21)

x" '  () + ... , (3.22)

= PA() + ..., (3.23)

= x"1/2 p, + .(3.24)

x114 yI + ..., (3.25)

where P1 is a constant to be determined, the blowing velocity is Vw=xw'/2Vw, and
wf-201w Vw is a specified constant. With p-plxw"1/2 and 4=xw/x, the streamline

shapes are found by substituting the expansions of (3.19) and (3.20) in (3.18):

= - ^1- 11/2 Vlw 4-(y 2)(4y) (3.2(y6))/(2Y))-d(.d,,= I-lw) t(d,(.6

where rli= Pl/0I, "lw i Il(tw), etc. The effective layer thickness Aix 3/ 4 is found by
integration between 0 and 1. After a change of variable '=4(-)/(2"),

1 = W2  1/27 V1w JI(12)/(C")(l -i/2 dn

{2 (¥_1)}1/22y22 21/2 2 2 I)

= (2xy-1)) '/ 2  () (2W1) r r)) (3.27)

in agreement with a result of Cole & Aroesty (1968). For y=1.4, &1=3.501

•(1w-lw2/t)1/2. If the shear-layer thickness were negligible, i. e., if Al~l, , then

Al-Al and the surface pressure would be found by substituting this result in (3.14), with

p-Pi=(O). In the case of primary interest here, however, Al can not be neglected; the

required shear-layer solution is given in the next subsection.

In the weak-interaction region downstream, for xv I, the form of solution is different
because pressure changes are small rather than large. If the blowing velocity remains
vw(x)=M.* 2V1wx- l/2 =M V1w(u.X/.) "1/2 for x)>1, the mass flow in the blown layer is

again 9j/=o(x/ 2 ). The pressure perturbation P-1, in a first approximation, is now

proportional to the slope dA/dx of the equivalent body. From the Bernoulli equation, the

10



velocity 5 is O((@-1)12). A mass-flow balance for the blown layer then shows that, for

X*1,

- 1 -P +  (3.28)
U =x"1/6 11( ) + .... (3.29)

= x + . (3.30)

where a double tilde is used to distinguish where necessary from the symbols introduced
for x<(I. The solutions are found in the same way as for x Id, but are simpler in form
because the density r-0P1w is nearly constant for x*,1:

* 1..2=IL {(2P'jlww2/ 3 x1/ 3 " l} (3.31)

P1 = 2yAi/3 = 2(2/3)213"Xlwlw2)'/3, (3.32)

* where the effective thickness is A(x)=AIxW. The constant-pressure shear layer for x*l

has only a higher-order effect since its thickness Z(x)=O(xl /2) is small in comparison with

the blown-layer thickness A(x). The air that has passed through the strong shock wave

further upstream, and therefore has higher entropy, contributes still another higher-order

* displacement effect that likewise can be neglected in a first approximation. The value

(3.32) is consistent with the results of Cole & Aroesty (1968).

3.3 Viscous shear layer

The viscous shear layer is described in a first approximation as a mixing layer between

air moving with uniform speed at zero temperature and another gas, here taken also to be

air, at rest with zero temperature. In terms of independent variables x and *t the boundary-

* layer approximations to the momentum, total-enthalpy, and streamline equations are

Ux + Px- P ( - ui*) + ... (3.33)

Hx = p (. -1 I H ) + .... (3.34)

* = .(3.35)

1l



where H= u2+2T/(- 1).

Asymptotic representations of the solutions as x-1O are expressed in terms of the

similarity variable t= *j/x 1/4 , for <c<**, in the form

u = 11l(0 + .(3.36)

T =Ti + ... (3.37)

= x"/2 + ...,(3.38,

S= x3/4 YI(t) + ...,(339)

where 0<0 and pf=constant; also p=p/Tr. The value or C0, which characterizes the

amount of mass entrained in the lower part of the shear layer, is to be determined.

Substitution gives the ordinary differential equations

u T -(TI (3.40)

1--, 7-1,

I t . + t- ' =  l" l l'') + (^fl)plT'rl -1 UlUl'2  (3.41)
2y

Yl' T , (3.42)

The solutions should match with the shock-layer solutions as t-- and with the blown-

layer solutions as -') . Thus it is required that -il-- 1, Trl--+o as =-+*o and ill=-*0,

TI--)0as --* 0. The effective layer thickness is Ajx 3/4 , where Al is the integral of (3.42)

from to to -; the integral is finite because the temperature decreases sufficiently rapidly as

-t. The numerical solution is carried out in terms of a rescaled independent variable

511/' , and P1 is to be found later from the appropriate matching conditions.

The differential equations (3.40) and (3.41) are sin'-,iar at =t0. For I/2<o<I, the

range of particular interest, the solutions as C-* 0 have the form 51=( -to)'u t and•

"rl=(t-W0)OT , where ut and Tt are analytic, and the exponents are oa=wI)(2o-1l) and

12



13=i/(2co--1). The coefficients T"l 1 51 of the second derivatives in (3.40) and (3.41) am

* therefore O(t--o) as -t.o. The numerical integration, described in detail elsewhere

(Matarrese and Messiter 1989), is based on a Newton iteration scheme, starting from

simple assumed distributions for iii and T' over a range L<<. Initially the lower limit

L is chosen large enough to ensure that tL>to. However, the solutions thus obtained for

uil and T do not have the correct asymptotic behavior when '-* L. Next CL is decreased

until the numerical and asymptotic solutions are seen to agree closely for small iU1 and tj;

the value found for 5'I/2"o is believed to be accurate to within less than 0.1%. The results

for y= 1.4 and o,=0.75 are

1-1% = -3.683, Pl1/2A1 = 0.3518. (3.43)

The corresponding velocity' and temperature functions iit and t 1 are plotted against Pl'l/2

* in figure 3, for p' 1%"<P'I"/2 <-; ti has been normalized with its maximum value T'im.

Calculation of the pressure is completed by matching Pl as -+ with the shock-layer

pressure P1 evaluated as t--0 and matching Pl as 0-o with the blown-layer pressure Pl
as t- 0. Thus

pl = pt= AIO.(3.44)

Now (3.14), (3.27), and (3.43) can be combined to eliminate the layer thicknesses, as
* shown in §4 below.

If €.o- 1/2, the exponents a and 53 obtained above in the solutions for '->o will both

become infinite, and clearly a different kind of asymptotic form is required. Numerical

0 solutions for o=0.7 and o=0.6, not shown here, suggest that the lower limit o---** as

co-+1/2. When co=l/2, it then follows from (3.40) and (3.41) that Ul and t" become

exponentially small as
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For f=l the asymptotic behavior as 0 seems easier to understand in terms of

Howarth variables defined by dY=dy, dX=Tdx and the similarity variable Ti=Y/(2X)1/2. •

The stream function and total enthalpy are W=(2X)1/ 2F(1)+... and H=G( 1)+...

respectively, where F and G satisfy the ordinary differential equations F'+FF"=Y-I(y-l)

•(F' 2 -G) and G"+FG'--O. As T--.O, G--O(eT1) and F-FO=O(Tiell), with F0 (corres-

ponding to to) to be determined; the fact that G=O{(F-Fo)/In(F-FO)) as 1j--O implies the •

presence of a logarithm in t 1 as t-+tO The numerical solution when o=I can be obtained

by a shooting method to give

= -2.066, = 0.2100. (3.45) 0

3.4 Higher-order matching

Matching of the shock-layer and shear-layer solutions requires for each variable that the

solutions evaluated as --0 and - agree term by term. As-40, the inner edge of the

shock layer is approached from above and the hypersonic-small-disturbance solutions

(3.13) and (3.14) show that the temperature has the form TT-4/--x" 'P I/p1 +...

-O(x'-1/2 "2/(3 )) as x--+0 and 1-0. However, as Z--**, the outer edge of the shear layer

is approached from below and it follows from (3.41) that T-M. 2 T=M p=O( '2/o-w)).

Since these two representations for T are not the same, the matching is not complete.

Bush (1966) has shown that an additional "layer" is required between the shock layer and

the shear layer. A solution for T in terms of a variable CB=M. WNxC, for proper choices

of the exponents A and C, allows matching in a first approximation with T as B--- and

with M. 2T as B--. When o=, the solution for T' decays exponentially as --oo; Lee &

Cheng (1969) have shown that the matching difficulty is resolved not by adding another

layer but by including higher-order terms in the shock-layer and shear-layer solutions.

Another difficulty arises with respect to matching of the shear-layer and blown-

layer solutions. As -0, the inner edge of the shear layer is approached from above

with uuO{( -,0), (2(a 'l)} and T-mo2T=O{M.2(t- 3)I(2w-I)}. As --0, the outer 0

edge of the blown layer is approached from below with u-M' I= M.'x'I/(-CY1)" and
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T The matching again is not complete, and it is not entirely clear

how to proceed. For a first attempt, one might think that an additional solution is needed

in a region between the shear layer and the blown layer, for W close to x1/4 and * close

to M.; '1x/4. The blown-layer and viscous-layer solutions for u would then be required

to match with this new solution. If the matching for u is considered first, one is led to

introduce a similarity variable

- (ml/ 4 )- 1/( 2 (O) mV - xl 4 ), (3.46)

and to try representations

1= C;*) +..., (3.47)

' (Ix 1 /4)"1/(2 O)) TT(*) + ... , (3.48)

for -oo <<oo. However, this procedure leads to approximate equations that are just

simplified versions of (3.40) and (3.41), with 'm0 and U12 <<t'. Except for additive

integration constants, the solutions are already contained within the solutions to (3.40) and

(3.41), and are not sufficient to allow the proper functional forms for both °--o and

-o*- It is probably necessary both to include higher-order terms and to consider still

other limit processes for a complete description of the local asymptotic structure. These

details are not needed if only a first approximation to the pressure is desired.

If instead o=1 the definition (3.46) for C* again is appropriate, as is the representation

(3.47) for u, but T has the modified form

r= " M x 14)1/2 In (M*x1/4)) -1'( ) + .... (3.49)

The presence of the logarithm is associated with the exponential forms of u and T in terms

of the Howarth variables noted at the end of the preceding subsection. As a result, the

pressure- gradient term is absent from the momentum equation and two integrations can be

carried out directly to give

(ut - uto) + uo In (ut - ut0) =-;*-( 4 pl), (3.50)

where uto=2(Pllw)"2/((y-l)(- 0)) , for matching with (3.20). It follows also that
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= (const.) (uT - uT0). (3.51)

The representations for u and T match properly as -- , and u approaches a small

constant value as V-+-, but T1
° is exponentially small as °--+- and higher-order terms

would be needed for completeness, as at the outer edge of the shear layer (Lee & Cheng

1969).

These considerations indicate some of the difficulties encountered in attempting to

derive higher-order terms and thus to obtain estimates of the largest neglected effects. For

x=O(1), it is fairly easy to see that the relative errors in the differential equations obtained in
each of the three limits (shock layer, viscous layer, blown layer) are all O(M., 2). The

expansions of the flow variables as M.-4. would then seem to proceed in integer powers

of M. "2 . But the higher-order terms not yet matched will evidently require larger

correction terms, probably in all three flow regions. It is therefore not possible to assess

the error without further consideration of the next terms in each of the expansions.

Moreover, in the strong-interaction limit x-+O the solutions will have expansions in 9

positive powers of x 1/4 and (M.x 1 /4) "1 , and in the weak-interaction limit x---* the

solutions will be found as series expansions in negative powers of x, so that still other

higher-order terms would have to be considered.

An additional question concerns the behavior of the flow for weaker blowing. If the

blowing velocity is decreased by taking ;1w' 1, the injected mass V=2M.; 2 ptw;iwx'J2

remains large in comparison with the mass flow M.'3x/ 4Q10 in the lower part of the shear

layer for values of x such that Mx' 14*lw'. The location of blowoff is at x=O(M.Vlw)

and moves downstream as V1w decreases from 0(l) to O(M..'). When Vlw=((M, ), the •

boundary layer is attached throughout the strong-interaction region xo I, and in the weak-

interaction region xl the injected mass is of the same order as the mass flow O(M.' 3x1 /2)

required for the constant-pressure free shear layer. A special solution is needed for a

narrow range of M-.lw close to a dividing value, as for incompressible flow (Kassoy

1971, Klemp & Acrivos 1972).

3.5 Wedge flow

Inviscid hypersonic flow past a thin wedge is easily described with the help of suitable

approximations to the shock-wave jump conditions. If the wedge half-angle is a*.l, and
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M..cxl, (3.5) gives p-(y+l)/(y-l) and (3.6) with the shock slope M. 3s'-(y+-)M..W2

gives p--,yv+l)M.. 2 c 2/2 in the uniform flow between the shock wave and the wedge

surface; the Mach number there is M-{y¥-l)/2}'I/2a -1. If now a boundary layer is

considered, its temperature is again T=O(M.. 2), but the density p=p/T is 0(a 2 ). For weak
interaction the boundary-layer thickness is O(M. -'I(v.X/u.)I/2), smaller by a factor

O(M.'cC) than for a flat plate. This thickness is small in comparison with the distance

* (y-I)aX/2 between wedge surface and shock wave, and the shock wave is therefore weak,

only if X ,M.2 ~a-v.0 u.. The reference length Xr should therefore be Xr=M.. 2WC4

•v./u. for the wedge, smaller by a factor (M.a)- 4 than for a flat plate. The

nondimensional coordinates x, y and y are now defined in terms of this new Xr. The

scaled y-coordinates, however, are measured relative to the surface, with M. "1 replaced by
Sa, so that

=(y - Cx)/a. (3.52)

With the new Xr the wedge flow is identical to flow past a flat plate in the first
0 approximation when X,,Xr. That is, the wedge thickness is small in comparison with the

thickness of the disturbed-flow region when X4cXr. Since the merged-layer regime again-
is present for X--O(M.. 2 0)v./u.), i. e., for x--=O(oa4 ), the strong-interaction description
given above now applies to the region a 4,,xc 1, a region which is shorter than for a flat

0 plate in view of the revised definition for Xr.

In the weak-interaction region for x* 1, the flow between the shear layer and the strong

shock wave from the wedge vertex is, however, described in a different way, in terms of
small perturbations about the uniform flow behind the shock wave. A linearized flow

* description is again appropriate, but both families of waves are present because outgoing

waves are reflected from the shock wave; the reflected waves are weak in a numerical

sense, but not in an asymptotic sense, since the ratio of reflected-wave strength to incident-
wave strength does not vanish under the limit processes considered here. In the blown

* layer the density is nearly constant, and so the incompressible form of the Bernoulli

equation is appropriate in the first approximation.

The required solution in the blown layer was given by Cole and Aroesty (1968). The
blowing velocity is taken to be vw=a2lwx'l/2= M.,lw(u.X/v.)'l/2, the same as chosen

for the flat plate. For x---, the pressure perturbation is related to u by the Bernoulli

equation for incompressible flow and, for matching with the perturbed wedge flow, has the
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same order of magnitude as the product of (Ma)2 and the ratio of a typical perturbation in

streamline slope to the wedge angle. In the blown layer (3.19) and (3.20) are replaced by

P-iwcnsanU2_ 2 f(Xw)-P(X)), (3.53)
P-P lw=COnlstant, u2 _

where again the value of Xw defines a streamline. The solutions for u and p when x*, are

expanded in terms of t=*/x'1/2 as

u = ax x-'1/3 nl(t) + .... p = Me2Ot2[(+l)/2 + x-1/3 1+.., (3.54)

where n1 is found in terms of Pi from (3.53) and ;I is a constant to be determined later.

Again the double tilde is used where necessary to distinguish from quantities defined for

x, 1. The streamline shapes are found, again using iy=pu and 4=Xw/X, from

=X2/3 (g)+ .... d= - ffi w1/2 1w 4'1/3 (1_41/3) "1/2 dk. (3.55)r,2pl J

The blown layer has the shape of an effective body

Y~IX 2/3 , A-4{VIwVI w2/(2D1) )1/2, (3.56)

where 11 is found by integration of (3.55).

In the region between the shear layer and the shock wave the flow is nearly uniform

with the flow variables equal to the values obtained from the shock-wave relations. As

v = a + vI(x,) + ... }(3.57)

p = MN.2a2(7y(+1)/2 + pI(x,9) + ... }, (3.58)

p = y- +-pI(x, 9) + ..., (3.59)

where Ivill<I, 1plI'(l, and lpll(4l. The perturbations in v, p, and p are described by the

linearized form of the hypersonic small-disturbance equations (3. 1) through (3.3):

y+l y~il I_

PIx+-V =O, -vX+ -vP=0, PIX I1)plx = 0, (3.60)
y-l y-I y
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where P I is easily eliminated. Linearized boundary conditions are given at the wedge

surface 9=0 and at the undisturbed shock-wave position 9=(-1)x/2:

v(x,0) = dA(x)/dx, pI(x, -x) ='fl+1) vi(x, x), (3.61)

where A(x)=A x2 .

The differential equations (3.60) and boundary conditions (3.61) are satisfied by

solutions in the self-simila form x'1/3fn(9/x). Since P1 and vj must each satisfy a wave

equation, the solutions are known moreover to be functions only of x±MOP, where
MO={V-1)/2} "1/2. It follows that

1 = Cl{x+ MO " /3 + c2(x-MO9 "1 /3 , (3.62)'

- v=c1 (x+MO9)'1/ 3 -c2(x-Mo9) 1/ 3. (3.63)
(y-I)M0

The integration constants c I and c2 are found from the boundary conditions to be

k1/3 2(y+t)lik I/3  (.4c2 =- cl = ,(.4x. 3(y-1)Mo(k'/3-X.)

where

2-(y-I)M (y-I)Mo-l ( )1/2 (3.65)
2+(y-I)MO (Y-I)M0+1 ' . (3.65)

The solution to (3.60) and (3.61) for arbitrary Z(x) has been discussed by Chernyi (1961).

The result is found as an infinite series, since a disturbance reaching the surface contains

the effects of infinitely many wave reflections. Chernyi (1961) and Cole and Aroesty

(1968) also specialized this solution for a power-law form of A(x); eqns. (3.62)-(3.65)

duplicate their results.

Setting 0 = in (3.62) gives ;I in terms of 1 1:

Pl=xl/3 plI(x,0) = 2"Ay+1)Aj(X'+k'/3) (3.66)

3(.1)Mo(kl/3-)(.
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A second relation between DI and 11j is found from the blown-layer solution (3.56).

Eliminating Al,

Dj=(yjw / (2fl)(;+k/ 3)) 2/3  (3.67)

For y=1.4, DI= 3.615 (PIw lw2)13.

4. Numerical Results

The strong-interaction solutions are obtained in the limit as x-- O and M..x1 /4o, with

M.y/x3/4 held fixed. In this limit the nondimensional velocity u is zero in the blown layer,

increases from zero to one across the viscous layer, and is equal to one in the shock layer.

The scaled temperature M. 2T is zero, in the limit, in the blown layer and in the shock layer,

and is 0(l) in the viscous layer. For finite but large Mx /4 , the first corrections to the

zero values of u and M. 2T in the blown layer are proportional to powers of (M.x/4)"1 .
The remaining parameters are the ratio of specific heats y, here taken equal to 1.4; the
exponent co in the viscosity law g=TO; aind a blowing parameter Alwvlw , related to the

momentum flux normal to the surface.

In the first approximation for the strong-interaction region, the pressures (3.24) and

(3.38) in the blown layer and viscous layer are functions of x only and are equal to the

pressure (3.10) evaluated at the inner edge of the shock layer. The result (3.44) is P =PA A
=pl(O). The quantities pI(0)/A 1

2 , p l2A 1, andp 11 2A1 are given by (3.14), (3.27), and

(3.43) respectively. With AI=AI+Al according to (2.21), the pressure Pw at the surface

is found for y=l.4 and ca=0.75 as

Pw = [0.3721+3.703(lwlw2)/2} x 2 + .... (4.1)

If instead w=l, the surface pressure becomes

Pw = (0.2 2 2 1+3 .7 03 (Pljwlw2)12} x 1 2 + .... (4.2)
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The ratio of the shear-layer thickness A1 to the blown-layer thickness A, is found from
* (3.27), (3.43), and (3.44), and is seen to decrease as PlwVlw 2 increases. When 0o=0.75,

the ratio is

A I/Al = 0. 1l1/(Alw~lw 2)1 /2 , (4.3)

and when o=l.0, the constant is replaced by 0.071. Thus the two layer thicknesses are
equal when the value of (AlwVlw2)1 /2 is about 0.1; in the numerical calculations this
parameter is taken equal to 0.1 or 0.2. The shoc-wave shape for co=0.75 is then found

from (2.20), (2.21), and (3.14) to be

ys = M,.,' 1 (0.9515 + 9 .4 6 9 (p lwVIw2)1 2) 1/2x3/ 4 + .... (4.4)

If ca=1, the constant 0.9515 is replaced by 0.5680.

The shear-layer velocity and temperature profiles of figure 3 are replotted in figure 4 as

* functions of My/x3/4 , instead of l'I/M.3-/x /4 , for two values of the exponent cO and
for 0 w' w=O.01 i. e., for nearly equal blown-layer and shear-layer thicknesses. The

hot low-density shear layer occupies the region Ai< M.y/x3/4 < Ai+ai and thus has a

clearly defined thickness, as shown both by the figure and by the integral of (3.42). The
* blown layer is defined to be the region O<M.y/x3/4<AI between the shear layer and the

wall and contains almost all of the blown gas, with the exception of an amount smaller by a

factor O((Mxl/4) "1 ) that is entrained in the lower pat of the shear layer. The streamline
separating free-stream air from the blown gas thus lies within the shear layer. Since the
scaled viscosity coefficient in (3.33) and (3.34) is proportional to To), and T<I, an increase

in co decreases the diffusion rate and therefore decreases the shear-layer thickness Al. In

figure 4 a change in o from co=0.75 to co=l.0 is seen to decrease Al by a factor of about

2/3, and also, because of coupling through the pressure, to give a small increase in the

blown-layer thickness 3Ai, such that the sum Al= Ai+Ai decreases. Since the shock-wave
position Pis is proportional to Al, as seen in (3.14), the shock-wave slope then decreases,

and the pressure also decreases, as shown by (4. 1) and (4.2).

In figure 5 the shear-layer velocity u is plotted against M.y/x3/4 for o=0.75 and for
three values of the blowing parameter, PlwVlw 2 =0.01, 0.02, and 0.04. Stronger blowing

of course moves the shear layer further from the wall and also decreases its thickness
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slightly. The velocity in the blown layer, smaller by a factor O((M.x 1 /4) 1), is shown for
M. x/4=l0, lwVIlw 2 =(.01, and VIw=0.05. An inverse composite solution is also

shown, obtained by adding the blown-layer and shear-layer solutions for M~.y/x 3/4 in terms

of u, for 0<u<l, and subtracting the common part, namely A,. This composite is

uniformly valid to 0(1) in M.y/x 3/4 , since the shear-layer and blown-layer solutions are
recovered by taking limits with u fixed and with M..xl/ 4 u fixed, respectively. It would

also be possible to obtain a shock-layer solution for u-1 and to use the results of Bush
(1966) to show a smooth joining with the shear-layer solution.

Profiles of the scaled temperature M.2T are shown in figure 6 for two of the cases,

P lw 2=0.0l and 0.04, shown in figure 5. The maximum temperature Tm is seen to be
about Tm= 0.0315 M. 2T., for the selected values y= l.4 and o)=0.75. This value of Tm is

less than 1/6 of the isentropic stagnation temperature To, and so real-gas effects are delayed

to a somewhat higher Mach number than if the full To were reached. A composite solution
for M.y/x3/ 4 in terms of M,.2T, O<T<Tm, is shown for the same numerical values as in

figure 5. To allow the correct T1 at y=0, the curve has been displaced downward by a
small (higher-order) amount; the correction is chosen to decrease linearly with TI and

disappears at TI=Tm.

Figure 7 shows the strong-interaction pressure for three values of the blowing
parameter PlwVw 2 , for co=0.75 and for w=1.0. As predicted by (4.1) and (4.2), the

pressure is linear in (P1wV1w 2)1/2 and decreases as 0o increases.

The weak-interaction pressure, for XXX differs from a constant value by O(x'I/3), as
in the solutions (3.28) for a flat plate and (3.62) for a wedge. A calculation for X=O(Xr),

however, would require numerical solution of partial differential equations in the shock

layer and shear layer. Nevertheless, since the extensions (unwarranted, to be sure) of the
asymptotic solutions toward X=Xr do not lie very far apart, a reasonable idea of the

approximate surface pressure in this region can be found quite easily by interpolating in

some simple arbitrary way between the strong-interaction and weak-interaction results.

The interpolation formula adopted here is

Pw - =r{pw(strong) - 1} + (1-r)[p., (weak) 1)

= r 51x' / 2 + (l-r)l x '1 / 3, (4.6)
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where ;I is given by (3.32), and

r= 1 = cosh'12, (4.7)
cosh 3x

so that r decreases from 1 to 0 as x increases from O to o. The free parameter 3 in the

interpolation formula has been chosen so that r=1/2 when x=l. That is, at x=1 the
0 interpolated solution is chosen to lie halfway between the poressures that would be predicted

if the strong-interaction and weak-interaction solutions were evaluated there (beyond their

respective regions of validity x< and x) 1). For a thin wedge, the required rescaling gives

( .0 2)( I = - + (1-4 x -1/3 (4.8)
0 (MN.cc) 2  2 =px'+1r~-(

where now x = X{M,.2oCa"4v./u..) and 01 is given by (3.67). Interpolated surface

pressures for a wedge are shown in figure 8. Although the error appears to be small, it
should be remembered that the value (4.7) for 0 is arbitrary, and a change in 13 would shift
the location of the interpolated curve. The function r is likewise arbitrary, and there is no
theoretical basis for the suggested choice; the accuracy of the interpolated curve in figure 8'
remains uncertain in the absence of a numerical solution for X=O(Xr).

Additional numerical results for a wedge in the case of uniform surface temperature.
including the integrated force change as a function of blowing rate and other parameters,

have been given by Matarrese et al. (1990).

5. Concluding remarks

The extension of hypersonic viscous strong-interaction theory to permit large surface

blowing velocity requires that choices be made among several possibilities for the surface
b:undary conditions. Two constraints have been imposed: the perfect-gas law must be

* satisfied, and the blown-layer thickness is taken to be of the same order of magnitude as the

viscous- and shock-layer thicknesses. Here the density of the blown gas has been chosen

to be of the same order as the undisturbed air density and to be constant at the wall; the

corresponding form for the blowing velocity is then fixed. Other choices can be made,

leading to differences in the blown-layer solution and in some cases differences in the

* conditions at the lower "edge" of the shear layer.
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Even a first approximation is found to introduce some subtleties. Although the three

appropriate limit processes have been successfully applied to give self-consistent 0
asymptotic flow representations in the three layers, the matching of solutions in adjacent

layers is not complete, and would have to be refined if higher approximations, presumably
proceeding in powers of x and (M.,x'114) 1, were desired. Moreover, the results do not

reduce in a simple way to the solutions for weak blowing. As for incompressible flow, a
special limiting case would have to be considered in the neighborhood of blowoff, when 0

the amount of injected mass is close to the mass entrained in the lower part of the free shear
layer. Finally, numerical solution of the shear-layer equations for W 1 was not successful
with a straightforward shooting technique, and ultimately was carried out by an approach to

the desired result through neighboring solutions. 0

In the present formulation the scaled results contain only a single blowing parameter
which measures the normal momentum flux at the surface. (The ratio of specific heats and

the exponent in the viscosiy law of course appear as well.) As an obvious extension it is
planned to consider the injected gas as different from air, so that in general one more 9

differential equation is required, with one or more additional nondimensional parameters.
Further numerical studies will then be carried out. It is also anticipated that the present
formulation will serve as a useful test case for comparison with numerical Euler and
Navier-Stokes codes.

This research was supported in part by the U. S. Army Strategic Defense Command.
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Figure captions

1. Flow regions for viscous interaction in hypersonic flow past a flat plate with strong blowing.

2. Orders of magnitude for layer thicknesses and mass flows in strong-interaction region.

3. Scaled shear-layer solutions in strong-interaction limit, as functions of the stream-function

variable l'l2 = P '11lK3/x"14 , for o3=0.75: - , velocity uI; - - -, temperature

'l'lrim.

4. Scaled shear-layer solutions in strong-interaction limit, as functions of M..y/x 3/4-Y 1 , for

IwVlw 2=0.01: - , velocity i 1 for )=0.75; - - -, velocity 51 for o=1.0;

temperature Ti/Tjm for a-0.75; - - - -, temperature TI/Tim for (a=1.0.

5. Velocity profiles u vs. M,.Y/x 3/4 in strong-interaction region, for o=0.75: - - -, shear

layer for Plwjlw2--0.01; - - - -, blown layer for plwVlw2=0.0l, M.A14=10, 01w= 4 ;

-, composite for 0lwVIw2-0.01, MxI/ 4=0, w4 -- -- , shear layer for

lww 2=0.02; . , shear layer for Pjwvjw2 =0.04.

6. Temperature profiles M2T vs. My/x3/4 in strong-interaction region, for o)=0.75:

- - -, shear layer for Piwlw 2=0.01; - -- -, blown layer for pIwVlw2=0.01,

MX 1/4-10, Plw- 4 ; -, composite for plwVlw2=0.01, M**xl/4-10, plw-4;

- - - -, shear layer for PlwVlw2=0.04.

7. Surface pressure distribution Pw vs. x, in strong-interaction region: - , for Piwj1w 2

-0.01 and o"3-.75; - - -, for lwVIw 2-0.O1 and co=1.0; -- -, for pjwijlw2 -0.04

and cw=0.75; - --- , for ww2---_0.04 and w=1.0; .... , for p Iw =0w2--.16 and

w--0.75; ..... , for Pfwlw 2-.16 and cz=1.O.
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8. Surface pressure APw =(Pw- " 4Ctf)2}/(M,a)2 vs. x=X/(M.. 2o)aC4vj/u..} for

thin wedge, for Plw~lw2 =0.01 and o)=0.75: -- -, strong-interaction solution;

weak- interaction solution; , interpolated solution.
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Note

A Numerical Method for the Self-similar Hypersonic

Viscous Shear Layer
0

1. INTRODUCTION

In laminar fluid motion at high Reynolds numbers, viscous forces are important

* primarily in thin layers described by the boundary-layer approximation to the Navier-

Stokes equations. For the special case in which the pressure varies as a power of the

distance x along such a shear layer, the solutions have a self-similar form. If the stream

function W is chosen as the independent variable, and the pressure is p=(consL)xb, the

similarity variable is C=(const.)4l/x(l+b),2. The nondimensional boundary-layer equations

may then be written as

(TOluu), + (I+b) U bT_ 0  (1)

1 (1 ,b) T (y- !)b

(T+u()' + ) + -T + (Y-)T 'Iuu' 2 = 0 (2)2 Y

where u=u(Q) is the fluid velocity; T=T( ) is the temperature; y is the ratio of specific heats;

the Prandd number has been taken equal to one; the viscosity coefficient has been assumed

proportional to Ta', with 1/2<o<1; and the Mach number has been absorbed in the

temperature and density.

The boundary conditions for (1) and (2) will typically be given at two values of , say

=- and = 0, where the value of CO depends on the problem considered. For a

boundary layer along an impermeable surface, =--0; for a free shear layer, 0 is a negative

* constant to be determined as part of the solution. If the Mach number in the inviscid flow

above the shear layer is very large (hypersonic), the temperature on one or both sides of the
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layer will be low relative to the very high peak temperature in the layer, and in a first S

approximation T--+O on one or both boundaries. The example to be considered here is

concerned with "hypersonic strong viscous interaction" in the presence of large surface

injection. The viscous boundary layer is blown away from the surface to form a free sHear

layer, and the interaction with inviscid flow behind a strong shock wave leads to a pressure

variation with b=-1/2; details are discussed in [1].

In the limiting case of interest here, both u and T are zero at - 0, and so the

coefficients of u" and T" in (1) and (2) also vanish at that point The asymptotic behavior

as ,0 is given by u and i if c1-1, a logarithm

also appears, whereas if *- 1/2, then o-- -- and the behavior is exponential rather than

algebraic. The boundary conditions to be used for (1)-(2) when 1/2<o<l are then

u - (const.)( -WO) (2 al ' t ) ,  T - (const.)( -') 11(2W -) (3)

u--+ 1, T-40 (4)

The system (1)-(2) with boundary conditions (3)-(4) thus forms a two-point boundary-

value problem in which the location of one boundary, at which the solution is singular, is

unknown a priori .ad must be determined as part of the solution. Knowledge of the

asymptotic forms (3) is found to be necessary for obtaining a numerical solution;

specifying u=T--O, for example, is not sufficient. (The asymptotic behavior as ---o is

also known but will not be needed.)

Several numerical techniques have been used to solve the compressible laminar

boundary-layer equations. Early solutions with o = 0 were computed by Cohen and

Reshotko [2] using a successive-approximation scheme. For the case o << -1 (with o

specified explicitly), shooting from the interior was found successful by Nachtsheim and
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Green [3] as was the Newton-iteration finite-difference method described by Liu and Chiu

[4]. Nachtsheim and Swigert [51 developed a shooting method to handle asymptotic

boundary conditions. For the current problem, a Newton-based finite-difference method

utilizing continuation has been successful and is described below.

40

2. NUMERICAL METHOD

To handle the difficulties at the lower boundary, a continuation method is employed

with the location L of this boundary treated as a free parameter. ( 0 denotes the value of

L for which (3) is satisfied.) Trial numerical calculations show that if the boundary

condition u(&L)=T(&L)=O is adopted, then for L> , solutions are found which do not

satisfy the requirement (3) as 4-4L, whereas if 4L< 0 the trivial solution u=T=O is found

for 4L<<O, with the desired behavior (3) occurring for 0< - 0<<I. Figure 1 provides

an illustration of such behavior for the case y =1.4, (0=3/4, and b=-1/2 with the trial

solutions satisfying the boundary conditions U(&L)=O, T(4L)=TL, u(24)=I, T(24)=0. The

two curves to the left are typical of solutions with TL>O, 4L<o, and the two curves to the

right are typical of solutions with TL=O, L>4O; note that as TL--O, u--+O and T-O for

L<<O. Thus the second and all higher derivatives of u and T are discontinuous at = ,

and one may expect computational difficulties if an assumed location for the lower

boundary in some iterative numerical scheme is less than (that is, if 0 lies within the

computational domain).

The problem is now reformulated as follows. The new independent variable

x = (5)

* is introduced, and solutions are considered on the truncated domain 0<x<_x U, where xU is

chosen large enough that (4) is satisfied within a specified tolerance (bOth 1-u and T are
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O(x "2/0l ' 1 as x-+ao). The system (1)-(2) will be written in terms of x as a two-element 6

vector equadon in the form

r(s; 0L) = (6)

where sTs (u(x; L), T(x; L)), and r is the appropriate vector differential expression. The

boundary conditions

x=0: u=0, T=0 (7)

X=xu: u=l, T=O (8)

are now adopted, together with the additional condition

g(L) CL= 1= 0 (9)

where g is a function designed to monitor the solution behavior near the lower boundary,

vanishing only when (3) is satisfied. Starting with an initial guess L(0)>ro the numerical

procedure is to march in L, solving (6)-(8) at each step, and approaching from above

so that the singularity at lies outside the computational domain. Marching is terminated

when (9) is satisfied within some desired level of accuracy.

To solve the boundary-value problem (6)-(8) at each iteration level in L' a Newton-

based method is adopted, utilizing second-order finite differences and a nonuniform

computational grid. Based upon the first two terms in the asymptotic expansions for u and

T as -, , it is found that (3) is an accurate representation of the solution with maximum

fractional error of order 10-3 over the small interval 0<-,0<5a, where Ea is of order 10-3

for o)=3/4. To resolve the solution in this small region without requiring an excessive

number of grid points, the "exponential" grid0

6
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Xi xo+ (-1) AXo j ,...,N (10)(a-i)

is employed, where xO =0; Ax0 a x, - xo is specified (typically of order 10-4 to 10-3); and

the constant a a (xj+1-xj)/(xj-xj.) > 1 (-1.03 for example) satisfies

aN_ .1 X(11)

a- I =

with xN = xU specified (- 24 typically).

The system (6) may be written in a form suitable for numerical solution: the diffusion

terms are expanded and all negative powers of u and T are factored away to avoid possible

floating-point overflow during iteration and inaccuracies associated with computing ratios

of terms that vanish near Co; first and second derivatives are then replaced with three-poiht

central-difference formulas appropriate for the grid (10), e.g.,

du/dx I x = xj - uj+i + (a 2-1)uj - a 2u. 1  (12)
Axj. a(l+ca)

d2u/dx2 I x = xj == lxxj a Uj+1 - (a+l)u, + Ouj.1d~u/dx2 I (AXj. 1)2 a(l+ )/2 (13)

where Axj., = xj - xj. I . The errors are O((Axj) 2) in (12), and if c = I + O(Axj), in (13) as

well. The numerical approximation to system (6) thus reads

rj = rj(sj 1, sj. sj; L) = O((Axj) 2) (14)

where the first element of rj is given by

ri. a Tjuj2 Uxx j + (o--)Txjuj+Tjuxj+ )(xj+ L)Tj(2-o))) UjUx j - ( (15)
2 .j Y j

and the second by
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r2, a Tjuj T.,xj + ().l)Tx.juj+Tjuxj+ -- (xj+ L)Tj(2 "a)) TXj+ (..)b Tj(3 )

+ (r-I)TjujUgj2  (16)

with the subscript j denoting evaluation at xj. Requiring (14) to vanish at the N-I interior

grid points and using the boundary conditions (7)-(8), one obtains the nonlinear algebraic

system

R(S; 0L)= (17)

SOT = (0, o), sNT= (1, 0) (18)

where ST = ST( L) a (sI, s2, ... , SN-I), and the "residual vector" RT a (r l , r 2, ..., rN.0)

Given a value of L and an initial distribution S(0), the system (17)-(18) may be solved

using a variant of Newton's method which reads at the kth iteration level (as denoted by

superscript k)

(aR/aS)(k) A(k) - - R(k) (19)

S(k+ l ) S(k) + 0 1 (k)A(k) (20)

where (R/aS)(k) is th: 2(N- 1)x2(N- 1) Jacobian matrix associated with R(k), and A(k) is

the solution of the linear system (19) (the estimated required change in S(k) to give R(k+1) =

0). The "relaxation factor" al(k) which limits the maximum fractional change in any

element of S(k) over one iteration cycle, is defined by 6

(3 (k) - min (1, 8 / max I Ai(k)/Si(k) ) (21)
i

where 8 is a specified constant (- 0.3 typically), and Ai(k) and Si(k) are the ith elements of

A(k) and S(k) respectively. The iterate S(k) is considered converged when 6

max I Aj(k+l)/Si(k+l) 1 < < 1 (22)
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where el is specified (typically - 10-4). The matrix R/aS is of block-tridiagonal form

with the jth 2x2 subdiagonal, diagonal, and superdiagonal blocks given by ar/asj.,

ar/asj, and ar/asji respectively; system (19) may thus be solved efficiently using a

routine such as listed in [6].

Given the start-up values L(°) and L(1) (both > 0, e.g., 0.01 and 0), the (m+l)th

iterate L(m+) is computed using a variant of the secant method

CL(M+l) = L(M) - a 2(m) goM (3
(g(m) - g(m-l)) / ( L(m) - L(ml)) (23)

where g(m) n g( (m)) is-evaluated from S(kL(M)), the solution of (17)-(18) computed by

* solving (19)-(20) with L = L(m) and the initial distribution S( m-(rel)). The relaxation

factor, 0 < a2(m) < 1, is included to avoid overshooting ; and is adjusted during marching

based on the number of iterations required to solve (17)-(18); specifically, if (23) gives a

value of L(m+l) for which (19)-(20) does not converge within a specified number of

iterations, o2(m) is replaced with a lower value such as (0 2 (m))2, (23) is then re-evaluated,

and the (m+1)th iteration restarted. It is found numerically that (19)-(20) will not converge

in the sense (22) when ;L < ;0; thus the inclusion of 2 (iM) in (23) is a necessity. The

* iterate L(m) is considered converged when

I ;L(m I / I (M I E2 << 1 (24)

where e2 is specified (typically - 10-5).

To compute S(L(0)), (19)-(20) may be solved starting with the simple piecewise linear

distributions u=x/6 for x<6, u=l for x 6, and T=TL(1-x/XU); continuation is then applied

as the lower boundary temperature TL is incrementally reduced from an initial value .02

(say) to 0, thus providing an initial distribution to begin marching in ;L.
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The choice of the "monitor function" g is arbitrary and need only provide a sufficient

condition for satisfying (3). One might for example select g(oL) = dE/d L where E is the

square of the L2-norm of the relative error between the asymptotic and numerical solution

evaluated over the small interval 0 5 x < ea; g vanishes when E is a minimum, i.e., when

L = 0. Since (19)-(20) will not converge when L < 0, one may define a simpler 0

criterion on L alone. A possibility which works well for Co near 3/4 is

g( k) = T l (l+a) 2 - T; kO (25)

Axoa(l+a) ' 1

which is a second-order forward-difference representation of dT/dx(0; L) with To = 0; this

expression is particularly well suited for the case co = 3/4 since (3) gives T = O(x2) for

0 5a x <<1 when L = -J, and such quadratic behavior may be computed exactly by (25). •

3. RESULTS

A typical solution computed using (25) is illustrated in figure 2 for y=l.4, C0=3/4, 9

b=-1/2, N=200, Ax0=10 -3 and xU= 2 4 (a=1.034). Both u and T versus x are plotted with

most of the computational domain shown in part (a), and a blow-up of the region

0!5x<0.02 shown in part (b). For comparison, second-order asymptotic solutions are also 0

plotted in part (b) where relative errors between the numerical and asymptotic solutions are

seen to be of order 2% for 0<.x<0.01. For the case shown, solutions computed with larger

N indicate that N=200 (which required approximately 3 minutes to compute on an Apollo

DN 4000) gives an accuracy of approximately 4 significant figures over regions where the

solution is of order 1, falling to approximately 2 significant figures near x=0, the computed

location of the lower boundary, 40=-3.683, is believed to be accurate to within less than

0.1%.
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The rather large value of N required for reasonable accuracy, even with the use of grid

(10), is dictaed by the need to resolve the solution near x=O. When the grid was overly

stretched ((Z too large), accuracy was degraded and it proved difficult to obtain converged

solutions; the allowable amount of stretch is therefore limited and since Axo must be quite

small, N must be large. If were known a priori, then the required resolution near x=0

would not be as great, and N-50 with the same xU and a (but larger Ax0 ) would have

provided an equivalent level of accuracy over most of the grid for the case illustrated in

figure 2.

The replacement of asymptotic boundary conditions with numerical boundary

conditions plus a sufficient condition g=O, e.g., the replacement of (3) with (7) plus (25),

appears to offer a useful general technique. In the example presented hem, a particularly

simple function g could be defined since the behavior of neighboring solutions was well

understood after computation of several trial solutions. Possibly the general case might

best be handled with g based on some least-square error measure, similar to the ideas

presented in [5].
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* FIGURE CAPr!ONS

1. Trial numerical solutions (broken lines) and the desired solution (solid line) for u (a)

and T (b) near =C.o. With TL0: CL=-3. 2 (- -); L=- 3 .4 (- - - -). With L=-5:

TL=10-4 (- - - -); TL=10-5 ( - -- ).

2. (a): profiles of u (A) and TxlO (o); (b): comparison with second-order asymptotic

* solutions for u (-) and T (--) near x=O.
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Control of Hypersonic Aerodynamic Forces
with Surface Blowing

M. D. Matarrese,* A. F. Messiter,t and T. C., Adamson, Jr.
University of Michigan, Ann Arbor, Michigan

Pressure forces are derived for laminar flow past a thin wedge at high Mach number and high
Reynolds number, with mass added at the surface according to a power-law velocity distribution
strong enough that the boundary layer is blown away from the wall as a free shear layer. Self-
similar solutions are obtained for the thin layer of blown gas adjacent to the surface, for the thin
viscous shear layer, and for the outer inviscid-flow region between the shear layer and the shock
wave. Pressures obtained in the strong- and weak-interaction regions are joined by a simple
interpolation formula. Integrated pressure forces are shown for a range of Mach numbers and

altitudes, for various wedge lengths and vertex angles, and for different injected gases.
Equilibrium dissociation of oxygen in the shear layer is found to have only a small effect on the

pressure forces.

Nomenclature

A = constant defined in Eq. (3.12)

C = constant defined in Eq. (2.13)

C p = specific heat at constant pressure

D = coefficient in expression for layer thickness

DO = self-diffusion coefficient for undisturbed air

G = constant defined in Eq. (2.40)

h = enthalpy

H = atmospheric scale height

in  = integral defined in Eq. (3.15)

j = exponent in Eq. (2.24)

J = defined following Eq. (2.42)

k = constant defined in Eq. (2.13)

KD = proportionality constant for mass diffusion, Eq. (2.40)

Copyright © 1989 by authors. Published by American Institute of Aeronautics and Astronautics, Inc., with

permission.
* Graduate Student, Department of Aerospace Engineering. Student Member AIAA.

t Professor, Department cf Aerospace Engineering. Associate Fellow AIAA.
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Kp equilibrium constant for 1o2  0, Eq. (2.51)

KX, = proportionality constant for diffusion of heat, Eq. (2.42) •

KXD - proportionality constant for energy transfer by mass diffusion, Eq. (2.54)

K4L = proportionality constant in viscosity law, Eq. (2.41)

L = wedge length

m = total mass flow of injected gas, per unit span, defined in Eq. (2.24)

= scaled mass flow of injected gas per unit area, defined in Eq. (2.20)

man = scaled total mass flow of injected gas, per unit span, defined in Eq. (2.24)

M =Mach number 0

n = exponent in Eq. (2.9)

p = pressure

P = scaled pressure perturbation defined in Eqs. (3.7), (3.8)
Pr = Prandtl number, cp. go%, defined following Eq. (2.39) 0

q = exponent in Eq. (2.43)

Q = scaled mass flow defined in Eqs. (3.7), (3.8)

r = function of x defined in Eq. (3.12)

R = nondimensional gas constant for mixture, defined in Eq. (2.35)

Re = Reynolds number, u.Lv..

Sc = Schmidt number, .ij(pooD0 ), defined following Eq (2.39)

T = temperature

u = x-component of velocity

v = y-component of velocity

x = nondimensional coordinate in direction of undisturbed flow

X = coordinate in direction of undisturbed flow

Xr = reference length defined in Eq. (2.1)

y = nondimensional coordinate normal to undisturbed flow

Y = coordinate normal to undisturbed flow

Y b = mass fraction of blown gas

YO = mass fraction of atomic oxygen

z = altitude

a = wedge vertex half-angle
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= shock-wave inclination angle

* -ratio of specific heats

A = layer thickness

AF = increase in normal force on wedge, above inviscid-flow value

= fraction of molecules which dissociate into oxygen atoms, Eq. (2.50)

= similarity variable defined in Eq. (2.43)

S = lower limit for

A. = thermal conductivity

9.t = viscosity coefficient
0

v = kinematic viscosity

p = density

ab = ratio of molecular weight of blown gas to that of air

0 = defined in Eq. (3.9)

X = defined in Eq. (3.10)

= nondimensional stream function

i ' qu = lower and upper limits of q? in Eq. (3.1)

* 0) = exponent in viscosity law

Subscripts

0 = (scaled) quantity in inviscid wedge flow

1 = coefficient in perturbation quantity

* cc = undisturbed-flow value

a =air

b = blown gas

s = value at shock wave

w = value at wall

Superscripts

(s) = strong-interaction region

(w) = weak-interaction region

A = nondimensional quantity in outer inviscid-flow region

~ = nondimensional quantity in blown-gas layer

= nondimensional quantity in viscous shear layer
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Introduction

Control of flight vehicles at hypersonic speeds has usually been achieved by means of

moving control surfaces and/or by changing the magnitude and direction of the thrust vector. As a

possible alternative method of control, it might be of interest to consider the use of boundary-layer

blowing to introduce desired modifications in pressure distributions over the surface and thus to 0

provide control forces on a specified part of a vehicle. Different injection patterns would be

possible, including distributed or strip blowing. In the present study a simple blowing

distribution is considered for the simplest possible geometry, a thin wedge in two-dimensional

hypersonic flow. If the mass rate of flow of injected gas is sufficiently large, the boundary layer

is completely blown off from the surface; this is the case considered here. The solutions can be

useful in several contexts. First, they provide a measure of the magnitudes of forces to be

expected for a given blowing rate at given flight conditions; second, they can be used to check 0

computer codes developed to handle more complex flow problems;' finally, they may have some

application in the related problems of cooling hypersonic vehicles by boundary-layer blowing, and

of the introduction of fuel into the combustion region of a SCRAMJET.
0

Hypersonic flows of a perfect gas past simple shapes have been studied extensively using

inviscid-flow theory, and viscous interaction effects are also well understood. For a thin wedge

the effects of small perturbations in surface shape require solution of linearized equations. 2 If the

perturbations are caused by the displacement thickness of a laminar boundary layer, the equations

for a constant-pressure boundary layer at high Mach number allow a complete description of the

flow at points far enough from the leading edge. In a region closer to the vertex where the

boundary-layer thickness is large compared to the wedge thickness (but streamline slopes are still

smah), a seif-similar solution is available, 3'4 based on the hypersonic small-disturbance equations 5

for the shock layer and boundary-layer equations for the viscous layer. The interactions of the

boundary layer with the external inviscid flow in these two regions are, respectively, "weak" and

"strong" interactions.

Surface injection of a gas in the strong-interaction region, for a suitable power-law velocity

variation, still allows a self-similar formulation but with modified boundary conditions. Li and

Gross 6 obtained numerical results for strong interaction using boundary-layer solutions with a
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nonzero normal velocity component at the surface, over a range of prescribed surface

temperatures. If the blowing is strong enough, however, the boundary layer is blown away from

the surface. Kubota and Fernandez7 considered a compressible free shear layer, with prescribed

power-law pressure gradient, and an additional thin layer of inviscid flow adjacent to the wall.

For still stronger blowing velocities the layer of blown gas is much thicker than the free shear layer

and the shear layer can be regarded as a surface of discontinuity. Cole and Aroesty8 described the

blown gas by "inviscid boundary-layer equations" and the shock layer again by hypersonic small-

disturbance equations. A useful summary of this and earlier related work was given by Smith and

Stewartson.
9

When the blowing velocity has suitable strength, as well as an appropriate power-law

variation, in the strong-interaction region, the displacement effects of the blown gas and of the

shear layer are of the same order of magnitude. 10 Solutions in the strong-interaction limit can then

be obtained independently for the thin layer of blown gas, the viscous free shear layer, and the

inviscid shock layer, with certain constants to be found by proper asymptotic matching. The

shock layer is described by the hypersonic small-disturbance equations, 5 the viscous layer by the

usual boundary-layer equations, and the blown gas by inviscid boundary-layer equations. 8 The

derivations of Ref. 10 were given primarily for a flat plate, with an application to a thin wedge

mentioned relatively briefly. Since the temperature in the shear layer is high, the scaled

temperature in the shear layer should approach zero both above and below. Numerical solution of

the shear-layer equations was carried out by a continuation method in which the mass flow

entrained in the lower part of the shear layer is varied until the proper asymptotic behavior is

observed.11 The weak-interaction region can also be described by self-similar solutions; an

approximate interpolation formula was proposed in Ref. 10 for joining the surface pressures found

from the strong- and weak-interaction solutions.

The present study is concerned with pressure forces acting on a thin wedge in the presence

of mass injection at the surface having a power-law dependence on distance from the vertex. The

derivations of Ref. 10 are extended in several ways: to allow constant surface temperature rather

than constant surface density, as assumed in Ref. 10 to achieve some minor simplifications; to
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allow arbitrary values of the hypersonic similarity parameter instead of requiring that the normal

Mach number at the shock wave be large; to allow an injected gas different from air;, to allow for

variable specific heats and oxygen dissociation in the viscous shear layer, and to provide a variety

of numerical results for pressure forces caused by blowing.

The main objective is to relate the pressure distribution at the wedge surface to the

prescribed surface conditions, expressed by the specified distribution of injected mass and either a

constant wall density or a constant wall temperature. Solutions for the inviscid outer flow provide

the relation between the surface pressure and the effective body shape; solutions for the inviscid

layer of blown gas give an expression for the thickness of this layer in terms of the surface

pressure and the Mach number at the wall, here expressed in terms of the surface mass flux and the

temperature or density at the wall; the solution for the viscous shear layer provides a relation

between the shear-layer thickness and the surface pressure. Combining these results with the help

of first-order matching conditions then yields the desired results.

The following section summarizes the analysis, with emphasis on the new aspects.

Numerical results for integrated forces are then shown and discussed for a range of Mach numbers

and altitudes, for various wedge lengths and vertex angles, and for different injected gases at

different values of surface temperature.

Analysis

A thin wedge having length L and small vertex half-angle a<<l is placed at zero incidence

in a uniform hypersonic flow with speed u., pressure p., density p., temperature T., enthalpy

h., Mach number M,>>l, and viscosity coefficient g.. Local values of the velocity vector,

pressure, density, temperature, enthalpy, and viscosity coefficient are denoted, respectively, by 0

(uv), p, p, T, h, and g. A power-law viscosity-temperature relation =(T/T.)6) is assumed

for air, if a different gas is injected at the wedge surface, 4 also depends on the mass fraction Yb of

the blown gas.

Coordinates X and Y are measured along and normal to the free-stream direction, •

respectively, with origin at the vertex of the wedge. In the absence of surface blowing, an

effective body shape is found by adding the boundary-layer displacement thickness to the location
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of the wedge surface Y-xX. At points sufficiently far from the vertex (when L is large enough)

the boundary-layer thickness O{M0 o a' 1 (vX/u) 1 /2), where v.J=?4*/P , is small in

comparison with one-half the wedge thickness aX, and the pressure is nearly the same as for

inviscid flow. At points closer to the leading edge, however, this is no longer true. A reference

0 length Xr is defined by equating the two thicknesses, so that for X>>Xr the boundary layer has

only a small effect on the external flow, and the interaction is "weak," whereas for X<<Xr the

boundary-layer displacement effect is dominant, and the interaction is "strong." 3 ,4

Nondimensional coordinates are then defined by
X Y-oX Xr=M 20O .4vju" (2.1)X= , y= ,IX ,xvu 21

X Ca~r

where a<<l; y=O at the wedge surface (in the small-angle approximation); and at the shock wave

0 y-O(1) when x=O(1). The ratio L/Xr is proportional to the Reynolds number Re=u.L/v. based

on wedge length and free-stream quantities. For constant Mach number and an isothermal

atmosphere, the length Xr increases exponentially with altitude; a weaker dependence on

temperature can be introduced by assuming a standard atmosphere. At low altitudes Xr might be

small in comparison with L; at sufficiently high altitudes Xr>>L. The stream function,

nondimensional with oou*Xr, is defined by

Pa uodly=Pu (2.2)

0 with N'=O along the streamline from the vertex of the wedge.

If mass is added to the flow by surface blowing, here taken as directed normal to the

surface, the effective body thickness is increased further, and for sufficiently strong injection the

boundary layer is blown away from the surface as a free shear layer. The equivalent body now

includes the effects of both blowing and viscous diffusion. The sketches in Fig. I suggest the

qualitative features of the flow in the strong- and weak-interaction regions, for weak blowing

when the boundary layer is still attached and for strong blowing; in each case, the speckled region

• is the viscous layer. For the "strong" blowing considered here, three thin flow layers can be

distinguished. Qualitative sketches of the mass-fraction, velocity, temperature, and pressure

profiles for x=O(1) are shown in Fig. 2 for the entire region of disturbed flow between the wedge
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surface and the shock wave. A tilde will be used to indicate quantities in the nearly inviscid thin

layer of blown gas; an overbar will denote variables in the viscous free shear layer where mixing

(assumed laminar) of the blown gas and free-stream gas takes place; and a caret will denote

solutions for the outer inviscid flow between the shear layer and the shock wave. Superscripts s

and w will denote strong and weak interaction, for x<<l and x>>l, respectively. In general, the

flow variables will have different orders of magnitude in the different flow regions. The surface

temperature will be taken to have the same order of magnitude (other choices of course are

possible) as the temperature in the undisturbed air, whereas the temperature in the viscous layer is

larger by a factor O(M0 2 ). The mass flow in the blown layer is small because the flow velocities

are small there, and in the viscous layer the mass flow is still smaller because the density is low;

the first approximation to the pressure is a function only of x in both regions. The amount of

injected mass is chosen such that the blown-layer thickness is of the same order of magnitude as S

the wedge thickness when x=O(1). The thickness of the viscous layer is likewise of this order

when x--O(1); if, however, the mass flow is increased further, the viscous-layer thickness can be

neglected.

Inviscid Outer Flow

The location y = A(x) of the equivalent body surface, flow variables in the region between

this surface and the shock wave, and the stream function can be written as

A(x) = A(x) + A(x), p/p0 , = M, 2 a2 
A(x,y) + ....

p/p 0 0= (x,y) +.... u/u, = 1+ .... At- 23
00. (2.3)

where A(x) and A(x) describe the contributions of the blown gas and the shear layer respectively.

The pressure at the displacement surface y = A(x) can be found in terms of A(x) in both the strong-

and weak-interaction limits, for suitably specified mass injection rates.

For x<<l, a self-similar solution describes strong viscous interaction. The surface of the

equivalent body and the pressure at this surface have the form

A(x) = A (S)x3/4 + .... (S)(x,A(x)) = p1 (S)x"1/2 + ... (2.4)

where the superscript "s" indicates "strong" interaction and pl(s) is a constant to be determined; the

required form for surface blowing is shown below. The flow in the inviscid shock layer is

8



described by the self-similar form of the hypersonic small-disturbance equations, with appropriate

exponents. Numerical solution of these equations, for ^f.=1.4, gives a relation :0 between the

coefficients in Eq. (2.4):

Al(s) = 8(s) (p (S)) 2  s(s) = 0.945 (2.5)

The numerical value agrees with that of Ref. 6. The representation given by Eqs. (2.4) requires

that streamline slopes be small and that the pressure be small in comparison with the dynamic

pressure in the undisturbed flow. Thus the solution fails for very small x, in the "merged-layer

regime" for x-O(a4 ), or XfO(M002v./u,); boundary-layer approximations fail here as well, as

noted below.

If Xr<<L, the strong interaction is confined to a smaU fraction of the wedge length.

Further downstream, for the portion of the wedge where x>>1, the boundary layer causes only

small disturbances to the outer inviscid flow. In the hypersonic small-disturbance approximation,

the shock-wave jump conditions can be combined in the form
Vs=- L__ = Ps-P.- =2 (1- 1 ) (2.6)
3u " Ps  Y0M0o2p2p-00  -f.+ 1 M2

where 03 is the shock-wave inclination angle, y. is the ratio of specific heats in the undisturbed

flow, and the subscript s indicates that a quantity is evaluated immediately downstream of the

shock wave. The flow variables for x>>l have the form
P/p-0 = M~o2a 2 (P0 + Pl(w)(x 'y) + ...} pip- = p0 +

v/u = a( 1 + 1(w)(x,y) + ... P, = 30 + ... , M = a t'M 0 +... (2.7)

where M is the local Mach number, the subscript "0" denotes solutions for inviscid wedge flow,

and the superscript "w" refers to "weak" interaction. The values for turning through a small angle

ac are given by
030 = Y_ + + 1 P0 =

4~~ ( 0-1

P0 = Y-+30 M 1 , M0 2 - PQ (2.8)

The product M.a is the usual similarity parameter of hypersonic small-disturbance theory.
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For the weak-interaction rtgion x>>1, the surface y=A(x) of the equivalent body lies very

close to the wedge surface. The body shape and the linearized boundary condition are

A(x) = Al(w)xn +.... 1(w)(x,0) = hA1(w)xn 'l + ... (2.9)

where the value of n<1 depends on the choice of prescribed conditions at the surface. The shock-

wave jump conditions given by Eqs. (2.6) provide a relation between the perturbations pl(w) and 0
Av(w) at the linearized shock position Y=a30X or y=(00- 1)x:

¥ l~()x(olx -i--1 l w( 'P -l~)P 01(W)(x,(P0- l)x) (2.10)

00o 4 0

Each of the functions p1(w) and 1(w) must satisfy a wave equation in the x, y coordinates, and the

boundary conditions require that each have a self-similar form. The solutions satisfying these

conditions are

P = Cl(x+Moy)n + c2(x-My)n'l (2.11)

&A(w) = C(X+Moy)n'l - c(x-MoY)nl (2.12)
N4 v1 ui

where the constants are defined by
i _ _0____w _

C kl-n- (kl-n C)M 0

1-M 0 M0 - ( 0 +1
k- C= +1(2.13)

Mo( -  M0 {0 (f30 -1) + (00O- 4-)

The pressure at the surface of the equivalent body and the shape of the body are related by

Al (W) _= 8(w) p (w) = xI-n (w) A (w)(x,0), 8(w) = M 0 (kl-n - C)
y,,np0 (k l ' n + C) (2.14)

Thus 8(w) depends on y., n, and M.a. The results are equivalent to those of Ref. 2.

Inviscid Blown-Gas Layer

At the wedge surface, gas is injected in a direction normal to the wall at a low Mach

number Mw= O(a). For the blowing rates considered here, most of he injected gas occupies a

thin layer adjacent to the surface; the flow in this blown-gas layer is nearly inviscid, and only a

10



small fraction of the injected mass is entrained in the mixing layer. In the layer of blown gas the

*. scalings for the flow variables are essentially the same as suggested by Cole and Aroesty,8 and are

found from the boundary and matching conditions, thermodynamic relations, and the conservation

laws to have the form

* p/p. =M. 2a 2 p(x) + ..., p/p. = M. 2 a2Obg(xy) + .... T/T =T(xy) + ... (2.15)

u/u .( '(xy) + ... - -  V(xy) + (2.16)

where yb and 'y. are the ratios of specific heats for the blown gas and for the undisturbed stream,

0 respectively, and o b is the ratio of the molecular weight of the blown gas to that of air. The

pressure is a function of x in the first approximation since the layer is thin and the gas velocity is

low. The stream function V is then
b M O b'b1/2 -- " (2.17)

The streamline, total-enthalpy, entropy, and state equations beconm

1 U-2 +L3L I (j' 1 byj = ., _ u+ -' _Pii = ?b w '= (2.18)

P ubl Yb-l' LPw)

where the subscript w indicates conditions at the wall. This is the set of equations studied by Cole

and Aroesty.8 The wall values 9w, Vw, TwI and PW are understood to be functions of q and can

be expressed instead in terms of a coordinate xW that identifies the location at which a streamline

h-aves the surface. Thus

Ow= (Xw'0)' Vw = V(Xw'0)' Pw = P(xw) (2.19)

where xw(q) is defined by

0 d =-ff dxw , =ww (2.20)

and En is the scaled nondimensional mass flow of injected gas per unit area. The Mach number of

the injected gas is also expressed as a function of xw:

Mw = aMw(xw ) (2.21)

From Eqs. (2.18) and (2.20), the streamline equation can be written as

d ,,-1 ( i_ 1/2 -7/Yb f- (Yb"l)/2Yb /2 dx (2.22)dy (W

0l



The contribution A(x) to the shape of the equivalent body is found by integration over xW at a

given x, from a point on the surface up to the zero streamline:

A O)= d..__. _ a dxw  (2.23)

rVw pu 0 ;

where i --qw(x), the stream function at the wall, is the inverse of x=xw(q). The choice Mw=

O(a) gives A=O(1); i. e., for this choice the thickness of the blown-gas layer is of the same order

of magnitude as the wedge thickness when x=O(1).

The average mass flow per unit area equals the integral of pwVw divided by the length L.

If PwVw is proportional to a power of x, the scaled mass flow E can then be written in terms of a

scaled average m-avg , which is proportional to the integrated dimensional mass flow xia per unit

span:

=mavg L)(1-j) xJ, Lavg J -(x) dx

0 0, ) 1 mars (2.24)

The mass flow En is taken to have the same form for all x. In the strong-interaction region, for

x<<l, self-similarity requires that the pressure and the blowing Mach number have the form
= Pl(s)x 'dt2, 1Xiw = MW(S)x "1/4 (2.25)

These conditions can be achieved, for example, if either the wall density 5w or the wall 0

temperature Tw is constant, with the other of these quantities following a power-law variation

found from the equation of state. In the weak-interaction region, the scaled pressure and the

blowing Mach number are (

5i= P0 + P x '  .w = w) xj+"- (2.26)

It is then found from Eq. (2.22) that the contributions of the blown-gas layer to equivalent body

shapes for the strong- and weak-interaction regions are, respectively,

Z(s) = ZI(s)x3/4 + .. (S) = I)(S)9I (s)  (2.27)

Z(w) = Z(w) x( 3-2j)/3 +..., 1(w) = D(w)(pop(w))l/ 29iW(w) (2.28)
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and the exponents j, n are related by n=(3-2j)/3.

If the wail temperature tw is specified to be constant, the density % and velocity VW at the

surface are O(1 2) and O(x'1 /4 ), respectively, for x<<l. The exponent j appearing in i =

v/Tw is 3/4, and the injected mass flux is proportional to x"3/4. The coefficient for the blowing

Mach number in Eq. (2.25) is
0 -w (s)- - !2 marsL / (2.29)

MwI- 4plI(s)  t

Substitution in Eq. (2.27) then provides a relation between p,(s) and Z(s). Integration of Eq.

(2.22) gives the constant 6 ) for the streamline shape in the strong-interaction region as

_- 22 r d(yb- 1)).

6(s) 1 t2 1) (2.30)

In the weak-interaction region, again for constant wall temperature, the density and the coefficient

P in the blowing Mach number are
(W) a L 3/4

O w aw 4p0  (2.31)

Since pressure changes are small for x>1, the Mach number remains small throughout the blown-

gas layer, and the streamline shape is found from the incompressible form of Eq. (2.22).

Integration then gives the constant 6(w) in Eq. (2.28) for the thickness of this layer:

dy =- ) W dxw , (W) = 2 (2yb)1f (2.32)

If instead the surface density % is taken to be constant, 10 the exponent in m~= pww is j=1/2 and

the mass flux is proportional to x" /2. It is shown in Ref. 10 that the expressions obtained for

5(s) and 15(w) are the same as those given by Eqs. (2.30) and (2.32).

Viscous Shear Layer

In the high-temperature separated free-shear layer, the velocity and the thermodynamic

variables have the form

• u/u* = i(x,) + ... , p/p** = Ma*2a 2  (x) + p/p* a 2 p(xj) +

T/T* = M.2T(x,q) + .... h/h = Mo 2h(x,j7) + ... (2.33)

where the stream function and the streamline equation are

0
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-_ 1
X = a2, y9 - +(2.34) •

If the shear layer is treated as a binary mixture of ideal gases, the equation of state is

= pRT, R= I - Yb + arb'IYb (2.35)

where Yb is the mass fraction of blown gas and 1-Yb is the mass fraction of air, real-gas effects

will be considered later. With each constituent modeled by the same "point-center-of-repulsion"

potential-energy function, the transport coefficients for mass, momentum, and heat are all

proportional to r. 12 For a chemically inert mixture with negligible thermal diffusion, the

concentration, momentum, and energy equations are then (e. g., Ref. 13) 0

Y 1 = D u Y ) (2.36)

YxSc (KDIb3U-
ux+_L_ ~3 d KTW--%) (2.37)

1 -V

EPTX -x O@.L W

+ (K Tw UT-) + - KD1<'r(F,-p .p** b,9T (2.38)
(y -1)Pr W

The specific heats appearing in (2.38) are

FP = ECPbyb + EpjlYb UPbb Cb PO = Y(2.39)
_--1

where U-p has been made nondimensional with the gas constant for undisturbed air, and the 0

(dimensional) species specific heats c and cp, have been assumed independent of temperature.

The Prandtl number Pr and Schmidt number Sc are defined by Pr--Cpc , X. and Sc=g,/(p.D),

where X. is the thermal conductivity and D is the self-diffusion coefficient, for undisturbed air.

The proportionality factors in the diffusion coefficients are given by 14

KD -  , G= I2 I1/2 (2.40)

K 1Y h + __(bl1/'2y (2.41 )K -Yb+GYb Yb+Gab3/2(l.Yb))

1-Y +G
K I-Y b Eu b+Gb 3 2(l.Yb) (2.42)

T-Yb+Gb Euea Yb+Gab3/(l-Yb
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0

where J=l or J=(Eu*) " 1 for an injected diatomic or monatomic gas, respectively. The Eucken
* correction Eu is approximated1 5 by Eua,-= 0.115 + 0.354 Cpa.- . With the specific heat of air

assumed constant, Eua=Eu .; otherwise CPa is the specific heat of air evaluated at the local

temperature.

If the pressure is proportional to a power of x, the equations have self-similar solutions and

can be reduced to ordinary differential equations. The pressure P and the similarity variable are

"=PX1 + .... 4 -P (2.43)
Pl 1/2xq/2

For strong interaction q=l/2, in agreement with Eq. (2.4) for the shock layer and Eq. (2.25) for

the blown layer, and pl=pl(s); for weak interaction the pressure is nearly constant, and so q=1 and

p1 =p0 . Now U, T, and Yb are functions only of . The differential equations, Eqs. (2.36)-

(2.38), become

1 (2
2 Y b'= " (DRTlC..lUIYb)

q!F, 1- RT (K R 1 .T.lfUU,)' (2.45)

~ + q-'RT _.RIToIj~,2

SK
'  - -R1 )Y' (2.46)

(Y(,.- )pr Y sc D ;Fi(p, 3  p. b'

Numerical integration of these equations is carried out for Cl< <**, where .Q<0 and I 1QlPlxV2

is the (scaled) amount of mass entrained in the part of the shear layer below the zero streamline.

The boundary conditions as C-- require that.--'1, T--*0, and Yb -*0, and as '*C A it is required

• that U---0, T--0, and Yb-4 1; moreover, the asymptotic form as C g is known, and the solutions

for U and T must approach zero in the proper way. The computational scheme is a continuation

method in which the value of at the lower boundary is taken to be a small negative n,,mber that is

gradually increased in magnitude until the correct asymptotic behavior is achieved.11 Since the

numerical scheme in Ref. I 1 does not appear to converge for q=1, the weak-interaction solutions

are found by linear extrapolation from solutions computed for q close to 1 (e. g., q=0.98 and

0.99).



The streamline equation is found from Eq. (2.34) as

Y = pt d /2xl 'V2 RT/ii (2.47)

For strong and weak interaction, respectively, the shear-layer thicknesses are

A(S)(x) = t (s)x3/4 + ... , A1(s) = (pl(s))"1/2 5 (s) (2.48)

(w)X) = ;i (W)x I/ 2 + .... (w) = pd"1/2 5 (w) (2.49) 0

where 6(s) and 5(w) are numbers found by integrating the appropriate solutions for RT/'i from a

to -. These integrals exist sinceT ---0 sufficiently rapidly as -- o., as can be seen by deriving

the asymptotic form for T. For strong interaction cAVS)(x)-O(cax 3/4), and the shear-layer

thickness remains small in comparison with x when x>>a 4 ; i. e., as anticipated, the boundary-

layer approximation fails in the merged-layer r6gime x=O(d 4 ).

The analysis may be extended to include real-gas effects which occur at high temperatures.

For air, the specific heats begin to vary when T>_600 K, and 02 begins to dissociate when

T->2000-2500 K, for p-0.01-1 atm. Self-similar solutions may still be computed when the gas is

chemically reactive provided the pressure is nearly constant, as in the weak-interaction region, and

chemical equilibrium will be closely approached sufficiently far downstream. 0

To provide a measure of the extent by which the ideal-gas results will change, the analysis

of the weak-interaction region is repeated for the case of air injection, with air treated as a real gas

in chemical equilibrium. Following Hansen's analysis, 16 it is assumed that, for a given pressure,

the peak temperature remains low enough that, to a good approximation, only the dissociation of

oxygen occurs. (For pressures of the order of 0.1 atm, this assumption limits the temperature to

values below approximately 4000 K; the limit increases with increasing pressure.) Air is then

composed of N2, 02, and 0, with the mass fraction of 0 given by Yo = 2(16/29)6, where 16/29 is •

the approximate ratio of the molecular mass of 0 to that of undissociated air. The fraction e of

molecules which dissociate into oxygen atoms may be written 16

e = (-0.8 +[0.64 + 0.8(l+4p/Kp2)] 1/21 / (l+4p/Kp2) (2.50)

The equilibrium constant Kp for 202 i+ 0 is given to within 4% of the values listed in Ref. 17 over S

the temperature range 1500-4000 K (with Kp2 and p expressed in atmospheres) by

Kp = 40.68 T 1/2 exp(-29685/T) (2.51)
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where T is expressed in degrees Kelvin; the quantity 29685 is, in degrees Kelvin, the formation

enthalpy of 0 at absolute zero divided by the universal gas constant. With R=1 +E, the equation of

state remains as written in Eq. (2.35),16 and the scaled enthalpy K is approximately related to the

temperature by
h__T(l+ 2 3390/T T 4 29.5)

0 w e x p (3 3 9 0 /T ) - 1 - (2 5 2 )

where the sensible enthalpy of 02 has been equated with that of N2, and sensible enthalpies in the

term proportional to e have been neglected in comparison with the formation enthalpy of 0. Since

only air injection is considered, the species conservation equation (2.44) may be dropped. If

dissociated air is approximated as a binary mixture of "air molecules" and 0 atoms in evaluating

the viscous fluxes, then treatment of the transport properties as before leaves the momentum

equation (with q =1) unchanged, and the energy equation may be written more conveniently in the

form

- h' = (y -1) K T(' 1R-1 ''2 + ((K + KX )O'R'1u'' (2.53)
2 Go Pr~ X T 1 ~i''(.3

The proportionality factor K, for energy transfer by mass diffusion is given by

S,'IPr 296852 (1/2 + 29685/T)
KXD S 2965 2(2.54)T 1/c+ 0-5/(0.2-c -

where sensible enthalpies have been neglected, and the term in brackets (simil to Hansen's 16 Eq.

(43a)) is proportional to TaYo/T. The quantity K L is taken to be unity (considering the current

* level of approximation), and K., KD are given by Eqs. (2.40), (2.42), respectively, with

ab=l16/29, Yb=Yo, and J=1; the Eucken correction Eua for "air molecules" is evaluated with cP. =

7/2 + (3390/(2T))/sinh 2 (3390/(2T)), the nondimensional specific heat of N2.16 The boundary

0 conditions remain the same as before, and Eqs. (2.45), (2.53) are solved following the same

numerical procedure as described above; the pressure-gradient term, -{(y -1)/y.)(q-1)RT, is

added to the left hand side of Eq. (2.53) for computational purposes, with q approaching 1.

Unlike the ideal-gas case, the free-stream conditions and wedge angle must be specified before

computing a solution since real-gas behavior is explicitly dependent on dimensional temperature

and pressure.
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Results

The location of a streamline in the shock layer can be expressed by writing the integral of

the streamline equation in three parts:

r d P.U + P~6 fd W + Neu. '4 (3.1)
J Pu Pu f pu

where u becomes small as qF decreases toward qg; vw=O(M..o) is the value of iV at the wall; and

qu is still arbitrary. Then

Y d= + d (3.2)

where b=(abyb/ "I'/ 2. For at<<l and qu>> I such that a2wu<<1, the first integral approaches

A(x) as defined by Eq. (2.23); the second integral approaches a finite value A(x) since p-.

rapidly enough as qi-*.; and the third integral approaches zero if also -O. Then the left-hand

side approaches the equivalent body shape y=A(x), and so Eq. (3.2) approaches the first of Eqs.

(2.3). For strong and weak interaction respectively, the coefficients in the equivalent body

shapes defined by Eqs. (2.4) and (2.9) include contributions from both the thin layer of blown

gas and the viscous free shear layer.

Al (S) = z1(s) + AI(s) Al(W) = ;I (w)+ a (w) (3.3)

The pressures are found in terms of these quantities from Eqs. (2.5), (2.27), and (2.48) for strong

interaction, and from Eqs. (2.14), (2.28), and (2.49) for weak interaction. As indicated by the

notation, the pressures in the blown-gas layer and the viscous layer are equal to the pressure in the

outer inviscid flow evaluated at y=A(x) if x<< 1 and at y=0 if x>> 1.

The constants 6(s) and 8(w) introduced in Eqs. (2.5) and (2.14) are given in Table 1 for

y.=l.4 and, in the case of 8(w), for n=l/2 (Tw=constant) or n=2/3 ( w=constant) and a

representative value Moa=l. The constants 5 ( s) and 6(w) defined for the blown-gas layer in Eqs.

(2.27) and (2.28) are functions only of yb; the values for ¥b=7/5 and ¥b=5/3 found from the

solutions in Eqs. (2.30) and (2.32) are shown in Table 2. Some ideal-gas results for the viscous



shear layer are listed in Table 3 for injected gases having a wide range of molecular weights. The

constants 5(s) and (w) defined in Eqs. (2.48) and (2.49) are shown, along with the lower limit C

for the similriwy variable in both the strong- and weak-interaction solutions. The scaled maximum

temperature Tmax is seen to be a small number in each case; to find the actual maximum

temperature in the shear layer, the value of Tmax is to be multiplied by M. 2T0 ,. For example,

with air injection the maximum in the strong-interaction region is about 0.03MC2T., implying

that significant levels of 02 dissociation (which, as noted earlier, begin when the local temperature

is about 2000-2500 K for p>0.01-I atm) will not occur until M.,>15-17 if T.-,300 K; for helium

injection, cooling of the viscous layer increases this Mach number to M.>26-29. The ideal-gas

results are understood to be applicable when the Mach number is low enough (or the shear layer

thin enough) that dissociation effects are not appreciable. A comparison between the ideal- and

real-gas results for the shear layer is presented in Table 4 for the case of air injection on a 6-de^

wedge at an altitude of 30 km with M.=15 or 20. It may be seen that the real-gas analysis yields

values for the maximum temperature Tna x that are lower than the ideal-gas values, as would be

expected; the values of 5(w), which is proportional to the layer thickness, are likewise reduced.

For the conditions considered, however, real-gas effects do not greatly alter the values of 5(w) and

C.l; for example, there is only a 5% decrease in 5(w) when M.=20. The differences would of

course be greater if higher Mach numbers and temperatures had been considered

If the density of the gas at the wall is constant, the pressures are found, using the definitions

of Mw and mfavg' in an explicit form equivalent to the results of Ref. 10:

(S) = (s) (s) 1 - L 32
=(' + 212 avg (3.4)

P p1 W) C n \(w) I L ~1/3 (3.5)
I(w>) avg) 1/3 (kr)

In this case the viscous shear layer for x>>l has thickness O(x 1/2) that is of higher order than the

blown-layer thickness, which is 0(x2/3 ), and so the shear layer does not affect the first

* approximation for the pressure. If instead the temperature of the gas at the wall is constant, the

thicknesses of the viscous and blown layers are of the same order of magnitude for weak
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interaction as well as for strong interaction. Now the pressures are obtained from solution of the

cubic equation

(p1/2)3 . 3(P1/2) -2Q = 0 (3.6)

where P and Q are defined for strong interaction by

]s D~)5(s) !12 L 3/4 -D_ ) /2

P1  3 us) P, 5(s) 4( mavg= (37
0 (T3.) Q

and for weak interaction by

p(w) 1 PW) 5(w) - 1/2 L 3/4 /((w) 32

P1( 126F) P, 1/1 56 (w) 4 ( i)avg - l Ep~t~(w) Q (3.8)

The relevant root of the cubic equation is found from

Q51: P1/2 =2 cos 0, cos 30 = Q, 05< 2rt2 (3.9)

QA: P1/2 = 2 cosh X, cosh 3X = Q (3.10)

It is seen that P=3 when Q--O and that P increases monotonically as Q increases. For Q

sufficiently large (!16 for less than 10% fractional error), P-(2Q)2 3. This may be regarded is an
inviscid-flow limit, since Q is proportional to (4X r)3/4r avg and L/Xr is proportional to the

Reynolds number Re=uL/v.,; thus, for fixed values of the other parameters, large Q implies that

Re and/or the blowing rate 6favg are large, and that the viscous-layer thickness may therefore be

neglected.

The pressures for x>>l and x<<l have the forms given by Eqs. (2.25) and (2.26)

respectively. Because of self-similarity, these require solving only ordinary differential equations,

whereas a solution for x=O(1) would be much more difficult to obtain and is not attempted here.

Instead, since the numerical values of pl(s) and pl(w) are not greatly different, interpolation

between the strong- and weak-interaction results would be expected to provide an approximate

representation that is fairly accurate. The interpolation formula chosen is

- p0 = r(x)p1 
(s x"1/2 + (1.-r(x)}p 1 (W)xn" (3.11)

r(x) cosh(Ax1 2) A cosh' 12 (3.12)

For x<<l, r(x)-l and Eq. (2.25) for strong interaction is recovered; for x>>l, r(x)-O and Eq.

(2.26) for weak interaction is recovered; and A is defined such that r(x)=l/2 when x=l. (The
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definition of r(x) differs slightly from that in Ref. 10.) The interpolated pressure is shown by the

* solid curves in Fig. 3 for air injection at three different blowing rates with Tw=constant. The

differences from the asymptotic solutions derived for x>>1 and x<<l are seen to remain small,

even if the asymptotic solutions are used (incorrectly) at x=l.

The increase AF in the (dimensional) normal force above the inviscid-flow value is found

by integration of Eq. (3.11):

=2F: 1 f(S) I PI(W)r _L L_ _21 p I 1 I~, + (3.13)
(M..) 2p,L L 1/2+ 1L2 n n]) J

1 1/21 tan [sinh(A(L/X)l/2) (3.14)

(L/X )1/2
.In = f s2n- l sech(As) ds (3.15)

0

• where n=2/3 ifPw is constant and n=1/2 if Tw is constant.

When the blowing rate is sufficiently large, for given values of the other parameters, the

viscous-layer thickness is small relative to the total displacement thickness and can be neglected in

a first approximation. The displacement effect is then caused entirely by the layer of blown gas,

and is described by the inviscid-flow model of Cole and Aroesty.8 The approach to this limiting

case is illustrated in Fig. 4a, where the scaled total displacement thickness A (s), scaled blown-

layer thickness A (s), and the ratio of viscous-layer to total displacement thickness lS I (s)a

plotted against the scaled blowing rate iavg(Ldr3/4T W1/2 for air injection at constant wall

temperature. As the blowing rate increases, it is seen that a (s)/A (s) decreases, failing to less than

10% for navg(L/Xr)314T 1/2>7.2. The domain of parameter values for which the flow is nearly

* inviscid may be defined arbitrarily as that for which the force change AFinv computed neglecting

the shear layer underestimates AF by less than, say, 10%, where again the force change is

measured relative to the force on a thin wedge in inviscid flow. This arbitrary choice is illustrated

in Fig. 4b by plots of log(ma gT 1/2) versus log(L/X r) for AFin,=0.9AF, with MX,= 1.

* It should also be noted in Fig. 4a that the solutions do not remain valid if

ffiavg(LX) 3/4T w/2 is taken to be too small. It is assumed in the present theory that the blowing

rate is large enough to generate an inviscid blown layer with a thickness at least of the same order
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of magnitude as that of the viscous free shear layer, a condition that is not met if

ffnavg( X/w2--. (A somewhat weaker assumption can be shown to suffice, namely that

the amount of injected mass is large in comparison with the mass in the viscous layer.) In Fig. 4b

the dashed cures, for both strong and weak interaction, indicate the case where the thicknesses of

the viscous layer and the blown layer are exactly the same, to give a qualitative sense of the range

in which the theory is applicable. For the results presented below, the blowing rate has been

chosen arbitrarily to be large enough that ; for air injection this implies

.navg(d 3O. 34.

In Fig. 5, the scaled change in force AF(LdXr) 1/2/(M 2 a2peL) is plotted versus the scaled

total mass-flow rate m(Tw/T.)'/2(L1Xr)34/(MO c3p. u L) for various cases, all with constant wall

temperature. Two limiting cases are shown for air as the injectant. For LJXr-+0 , the strong-

interaction limit, the viscous-layer thickness is so large compared to the wedge thickness that the

magnitude of M.a is irrelevant, and the force change depends on pl (s). For l/Xr) and either

M a-0 or MOa-+--, the force change depends on pl(w); the larger force change is found for

M 0 ac--4 and the smaller for M 0a-4O, as might be expected since for M,,a--0 the wedge

thickness tends to zero in comparison with the total thickness of the region of disturbed flow

between the wedge surface and the shock wave.

Also shown in Fig. 5 is a comparison between air and helium as injectants, for LXr=l and

Ma(x=l, again for Tw=constant. As in the inviscid-flow case considered by Cole and Aroesty, 8 it 0

is seen that strong blowing of a gas lighter than air, in this case helium, yields higher induced

surface pressures and thus larger force changes for a fixed mass flow than when air (or a gas

heavier than air) is the injectant. Interestingly, this trend appears to become reversed when the

strength of the blowing decreases. Introduction of a light gas increases the specific heat for the

mixture and thus cools the viscous layer, as indicated by the maximum temperatures listed in Table

3. The average density is therefore increased and the transport coefficients are decreased. As a

result the thickness of the viscous layer is reduced and thus the force changes are also reduced.

The curves for air and helium in Fig. 5 would therefore be expected to cross if they were extended

to smaller values of mass flow.
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To establish numerical orders of magnitude for the change in force and the associated

mass-flow raw of the injected gas, dimensional values of AF and rn for Tw=constant have been

computed for a range of parameter values and for various injectants, using the properties of the

standard atmosphere. The solutions depend on several parameters which may be divided

conveniently into three groups. Parameters related to flight rigime are M., and altitude z; those

characterizing wedge geometry are (x and L; and those representing properties of the injected mass

are n, Tw, ob, and yb" (The solutions also depend on o, the exponent in the viscosity law, taken

here as 3/4.) Air injection on a wedge having length L=3 m and half-angle 0t=6 deg, for M,,=15

and z=30 km, is selected as a baseline case and is indicated by the solid line in each part of Fig. 6,

where M., and z (Fig. 6a), a and L (Fig. 6b), and injectant type (Fig. 6c) have been varied.

Note that large changes in force per unit span of order 1000 N/m (68.5 lb/ft) are achieved with

seemingly moderate injection rates per unit span of order 0. 1 kg/m-sec (0.067 Ibm/ft-sec).

In. Fig. 6a, it is seen that, for given injectant rates, the force changes increase with flight

Mach number at a given altitude and decrease with increasing altitude at a given flight Mach

number, as expected. Also presented is a comparison between the ideal-gas and real-gas results

for Mach 15 and 20, where differences between the solutions are seen to be small. (Since the real-

gas analysis was for weak interaction only, the real-gas curves were computed using the ideal-gas

results for the strong-interaction region, which extends over a negligibly small portion of the

wedge for the conditions considered.) As shown in Fig. 6b, at a given flight Mach number and

altitude, the force changes increase with wedge angle for a given length and increase with length

for a given wedge angle. Finally, in Fig. 6c, it is shown that the force change increases with

decreasing molecular weight of the injected gas, at higher injectant mass-flow rates. At lower

injection rates the opposite effect occurs and the crossover of the curves anticipated above is seen

for argon, air, and neon. It is also observed that the crossover occurs at lower injectant rates as

the molecular weight of the injectant decreases. For all the calculations in Fig. 6 the wall

temperature Tw is constant.

If a simple isothermal model for the atmosphere is adopted and the weak dependence on yb

is neglected, then the force change for injection with completely inviscid flow over a wedge with
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predominantly strong or weak interaction (for M. ac.+oo), and constant wall temperature, may be

written in the form

AF = const. (M., 2 e•" / H L ;n 2 T w /a b )1/3 (3.16)

where H is the atmospheric scale height. This simple expression shows the trends indicated in

Fig. 6, although not the proper quantitative values. For a fixed mass rate of injected flow it is 0

seen that AF increases with increasing M. 2e-z/ H, a factor proportional to free-stream dynamic

pressure, and also increases as the wedge length L increases; the dependence on L implies that it

would be most efficient to distribute a given amount of blown mass over a large surface area.

Increasing the ratio of the injectant temperature Tw to its molecular mass will cause greater

displacement of the outer flow and thereby also increase the force change. The dependence on

wedge angle a, not present in the above expression, is seen in Fig. 6b to be small for the

conditions considered there.

Conclusions

From the results of this analysis, it is concluded that relatively large pressure forces can be

achieved with relatively small amounts of gas injected at the surface of a vehicle traveling at

hypersonic speeds. Hence it appears that boundary-layer blowing is a possible alternative to the

use of moveable surfaces and/or vectored thrust for control of such a vehicle in the atmosphere,

and should be investigated further. Although only the very simple case of two-dimensional

wedge flow with a power-law distribution of injected mass is considered in this study, the

magnitudes of the surface forces found for relatively small mass-flow rates of the blown gas

indicate that it is worthwhile to analyze more complex blowing patterns with various injectant

gases, in order to obtain desired force distributions, and finally to consider more complex

geometries. A numerical code presently under development will be used to accomplish the first of

the above extensions to this work.
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Table I Shock-Layer Data Table 2 Data for Blown-Gas Layer a

]6(w) a f(w)Case aYb (i(w)

Tw = const.b  0.945 0.5675 7/5 3.501 3.347

pw = const. " 0.4150 5/3 3.604 3.651

-= 0
Eq. (2.14) with Ma=l, bn=1/2, Cn=2/3 aEither Tw or Pw const., Eq. (2.30), CEq. (2.32)

Table 3 Shear -Layer Dataa

Strong Interaction (q = 1/2) Weak Interaction (q = 1) 0

Inj- t b ab

n(s) "Tmax D(W) " la Tmax

H2  7/5 0.0690 0.1103 0.9623 0.0047 0.1259 0.6107 0.0079 0

He 5/3 0.1379 0.1796 1.4262 0.0098 0.2157 0.8101 0.0168

Ne 5/3 0.6897 0.3515 3.2133 0.0258 0.4384 1.6391 0.0437

Air 7/5 1.0000 0.3669 3.8154 0.0280 0.4331 1.9665 0.0447

Ar 5/3 1.3793 0.4604 4.5670 0.0356 0.5896 2.1818 0.0594

a = 1.4, w = 0.75, Pr 0.72, Sc = 0.74
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0a

Table 4 Comparison Between Ideal- and Real-Gas Results for Shear Layera

Ideal Real

M

5(w) -Cg Tmax [K] 5(w) " Ta [K]

15b 0.4331 1.9665 2,326 0.4099 1.9825 2,082

20 .. . 4,135 0.4131 1.9949 3,662

ay=1.4, o)=0.75, Pr=0.72, Sc=0.74, a=6 deg, z=30 km (T.=231.2 K, p =0.1174 atm)

b MV2T0 = 52,020 K, p = 0.07131 atm, C M 2T = 92,480 K, p =0.10991 atm
2 79

0
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Figure Captions

Fig. 1 Qualitative sketch of wedge flow field with weak or strong blowing and weak or

strong interaction. (Speckled regions are viscous layers.)

Fig. 2 Qualitative profiles of blown-gas mass fraction Yb' velocity component u, temperature

T, and pressure p.

Fig. 3 Surface pressure P-P0 vs. x for various rates of air injection.

Fig. 4a Strong-interaction solutions for scaled total displacement thickness A (s), thickness

(s) of blown-gas layer, and the ratio of shear-layer to total displacement thickness AI(s)/A (s)

vs. blowing-rate parameter mfTavg wl/2 (IjX r)3/4 for air injection with constant wall temperature.

Fig. 4b Parameter ranges where flow may be treated as inviscid and where present theory

does not apply. 0

Fig. 5 Scaled force-change AF(L/Xr) 1 /2 /(M OO2 a 2 p.,L) vs. scaled mass flow-rate

m(TwfTo) 1'2 (LXr )314/(M ,cgap 3 u.L) for various cases.

Fig. 6a AF vs. m for various flight regimes. 0

Fig. 6b AF vs. rn for various wedge geometries.

Fig. 6c AF vs. ma for various injectants. •
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Abstract fiat plate with distributed blowing off the surface. The
displacement effect of the blowing causes a shock wave

A validation study is presented for a numerical code to form ahead of the blowing region. If the blowing is of
which calculates a two-dimensional steady-state solu- sufficient strength, the boundary layer is blown off; this
tion for inviscid hypersonic flows in the presence of is called "strong blowing". It results in a viscous free
strong surface blowing. A higher-order Godunov-type shear layer separating an essentially inviscid rotational
finite-volume approach is used to discretize the inviscid blown layer next to the wall from an inviscid shock layer
Euler equations. Interface values of the state quanti- extending from the shear layer to the shock (Figure 1). *
ties are reconstructed using a monotone interpolation For sufficiently high Reynolds numbers, the free shear
technique suggested by Koren, based on Van Leer's layer can be assumed to have negligible thickness and
kappa scheme. The interface fluxes are computed using be regarded as a slip-stream. This fully invisid limit-

)e's upwind-biased flux-difference splitting technique. ing case was considered two decades ago by Cole and
The time-differencing algorithms used are a locally im- Aroesty [1], and by Wallace and Kemp [2]. Recently,
plicit, linearized Gauss-Seidel iteration scheme and an Messiter and Matarrese [3] have obtained similarity so-
explicit multi-stage scheme with optimized short-wave lutions that take into account the viscous interaction
damping. The results of the numerical calculations are for an inverse-square-root distribution of the injection
compared with analytical solutions obtained for strong velocity along a flat plate and along a thin wedge, in
blowing along a flat plate and a wedge with an inverse- two dimensions.
square-root injection-velocity distribution. The present paper is a validation study for an Euler

code for hypersonic flow with surface blowing developed
by the authors. Numerical solutions obtained with a

Introduction discretization of the Euler equations are compared with 0
analytical solutions for the inviscid strong-blowing case.

The recent revival of interest in hypersonic vehicles has The numerical method used is a finite-volume technique
renewed interest in the study of hypersonic flow. One for finding steady solutions to the two-dimensional Eu-
subject of study is the use of surface blowing to influ- ler equations with boundary conditions consistent with
ence an external hypersonic flow field. Understanding the assumptions made in the analytical work. Corn-
of the interaction between the injected gas and the high- parisons for blowing off a flat plate and a wedge are
speed outer flow is critical to applications of blowing in presented. 0
propulsion, surface cooling, and control-force genera-
tion. Experiments in hypersonic flows, however, are
difficult to perform; thus a heavy reliance on computa- Summary of Analytical Work
tional predictions has resulted. In the absence of ex-
perimental results, the only recourse is to validate the In the inviscid case to be considered, the flow field over
computational codes on the basis of flow cases for which a flat plate or a wedge in the presence of strong blowing
analytical solutions exist. This can help to distinguish can be separated into two different layers:
between physical and numerical effects in cases where 1. The blown layer next to the wall, made up of the
only numerical results are available, injected gas.

A generic problem is that of hypersonic flow over a 2. The shock layer between the blown layer and the

*Graduate Research Student, Member ATAA shock, made up of free-stream gas that has passed
tPraezmm, Member AIAA through the shock.
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Figure 2: Schematic showing the inviscid case. The inviscid blown layer and the inviscid shock layer meet in a
slip-stream along the separation streamline.
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The two layers meet in a slip-stream along the sep- [1] and [3] show that the resulting separating streamline
arating streamline (Figure 2). Flow in these layers has the form
can be characterized by three different regions along Y8 = 5X23;

the plate or wedge. Far enough downstream, the rel- the pressure distribution along the plate is
ative pressure changes are small, and the interaction
between the blown layer and the shock is described PW 1 + 2yM 0 0 6z-}
as weak (weak-interaction region). Further upstream, POo O
the curvature of the shock increases, and the relative These results are valid in regions where the parameters
pressure changes become large; here the interaction be- y,, and Moo are such that
tween the blown layer and shock is described as strong X
(strong-interaction region). Still further upstream, the y, <
thickness of the shock layer, blown layer, and free shear
layer (whose thickness has been considered negligible i.e., the thickness of the blown layer (y,,) is small in
up to this point) all become of the same order and no comparison with the thickness of the shock layer, so
real distinction between them can be made. This re- that linearized supersonic flow theory is applicable.
gion is referred to as the merged-layer regime. Similar These results have been extended in [1] and [3] to
flow classifications have been defined for viscous hyper- blowing along a slender wedge in hypersonic flow. In
sonic flow in the absence of blowing and are discussed the strong- interaction region, the solution is the same
in books by Hayes and Probstein [4] and by Stewartson as that for a flat plate since the wedge thickness is as-
[5]. sumed to be small in comparison with the blown-layer

In the strong-interaction region, the flow in the shock thickness in this region. This requires that y,, >> za,
layer is described by hypersonic small-disturbance the- where a is the wedge half-angle.
ory. The flow in the blown layer is compressible, and The solution for the weak-interaction region is differ-
is described by the so-called "inviscid boundary-layer ent for wedge flow. For the case of an inverse square-
equations". For flow on a flat plate, the results of Cole root injection velocity distribution of the form
and Aroesty [1] e,. d Messiter and Matarrese [3] may
be used to show that an inverse square-root injection V =
velocity distribution of the form Uea ( 1.7601) 

= 0.3022 -i, the separating streamline retains its shape, i.e.,
U =0  yes = 6z1 ,

for 7 - 1.4, results in a separating streamline of the but the pressure along the wedge becomes
shape YOS = 6£AM; PW 2 (7-t+ 1) +2.0541 - zi +
the corresponding pressure distribution along the plate The k a
is P' .1M2The key parameter in this region is the ratio of the

-- .119M~~ -2 . blown-layer thickness 6 to the wedge half-angle a. This
Poo ratio is assumed to be small. Also, as for the flat plate, *

Here 6 << I is the blown-layer thickness at z = 1, and the thickness of the blown layer is assumed to be small
Plw is the ratio of the blown-gas density to the free- in comparison with the thickness of the shock layer.
stream density, assumed to be constant with a magni-
tude of 0(1). The coordinates z and y and thickness Numerical Strategy
6 are non-dimensionalized with respect to the length of
the plate. The strong-interaction results are appropri- A higher-order Godunov-type [6] finite-volume ap-
ate for regions in which the parameter AM26 2 is large proach was used to discretize the inviscid Euler equa-
(-- ). tions. This requires a spacial interpolation routine,

In the weak-interaction region, pressure changes are a numerical flux function, and a time-marching tech-
small and linearized supersonic flow theory can be ap- nique.
plied. The pressure perturbations ( _) are propor- 9 State quantities in cell centers were interpolated at
tional to the local slope of the effective body created by cell interfaces using a formula introduced by Van
the blown layer (y,). The flow inside the blown layer Leer [7][8]:
is assumed incompressible. Again, for a flat plate with
an inverse square-root blowing distribution of the form qi+ = qij + 1+ (qi+,, - qi)

v W Z + 1 - c (q ij - qi- j)
U.o 3.464 4Mo3w- z
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This type of interpolation is at most second order outward through the boundary. Along this upper
accurate (for M = 4), and may lead to spurious boundary the flow is nearly uniform, so that the
oscilations in the solution in the neighborhood of entropy is locally constant and derivatives along
flow discontinuities. To avoid this while maintain- the boundary can be neglected. In a coordinate
ing the high order of accuracy in smooth flow re- frame normal to the boundary one can define the
gions, a limiter may be employed (Sweby [9]); the Riemann invariants
limiter adopted was one introduced by Koren [10] 2a
which is consistent with c= -4. It has the form -

1 2R 2 + R (q,4 - q-,) transported normal to the boundary along charac-qj+jj = qij + 2 2R 2 - R + 2 ' teristics with speed

R = (qi+14 - qj) u.L ± a(qij - iI) Here uj. is the component of the flow velocity nor-
In order to apply Koren's interpolation formula mal to the boundary, and a is the local sound
uniformly, state quantities at the boundary were speed. Since the flow is subsonic inward, infor-
calculated first using an appropriate boundary pro- mation from the interior propagates out along the
ceedure, as explained below. The finite differences

* ~~~across the boundary were then replaced by twice ~ +acaatrsi.Tu h au fteRthe finite difference from the celcene t twihe Riemann invariant should be extrapolated towardthe boundary in a manner consistent with the or-
boundary. der of the spacial discretization. The inward flux

e Roe's approximate Riemann solver [11] was used is then completely determined by the R+ Riemann
to calculate the flux across each cell interface. invariant and three other flow quantities specified

on the boundary according to the free-stream state.

o Two different marching procedures were employed

to reach the steady state solution. 9 Along the boundary where the flow exits the grid,
both supersonic and subsonic outflow exists. For

1. On scalar machines, a locally implicit, lin- the supersonic exit flow, no information cin propa-
earized Gauss-Seidel iteration scheme was gate in from outside the computional domain, thus
used. In order to avoid non-physical states the flux across the boundary is completely deter-
(i.e. negative pressure) in the evolving flow, mined by the state quantities in the interior. For
the time-step used was based on the ratio boundary cells where the flow is subsonic outward,
of the magnitude of the state vector to the information from outside can propagate in along
magnitude of its rate of change. This is the the uj. - a characteristic. Thus, some value of
Switched Evolution/Relaxation approach of the R- Riemann invariant should be specified; the
Van Leer and Mulder [12]. problem is that the exterior flow conditions are

2. On vector machines it appeared advantageous not known here. Values from a known exact solu-
to use an explicit time-marching scheme. tion could be specified, but this would be incorrect
Multi-stage schemes developed by Van Leer, when considering arbitrary blowing distributions.
Tai, and Powell [13] with optimized short- Hedstrom [14] proposed the time-dependent non-
wave damping vectorize well and are effective reflecting characteristic boundary condition
in avoiding non-physical transient states. 0p au.

In order to make accurate comparisons with the an- -a- = 0

alytical solutions, it is crucial to implement numerical This type of boundary condition has the disad-
boundary conditions that are consistent with the ana- vantage that it produces a steady state dependent
lytical ones (Figure 3). upon the initial conditions. An order-of-magnitude

e Along the inflow boundary of the grid, the flow nor- analysis of the governing equations shows that the
mal to the boundary is supersonic inward, so there pressure is constant across the blown layer; this
are no out-going characteristics. Thus, the flux condition can be enforced at the exit by using Hed-
into the cells along this boundary can be specified strom's boundary condition with the pressure gra-
explicitly according to the free-stream state. dient as a source term. The exit boundary condi-

tion then becomes
e Depending upon the shape of the grid chosen, the 9p Ouj Op

flux normal to the top boundary may be either - pa-- = -K (uj. - a) L, K > 0.
supersonic or subsonic inward. If the flow is sub- Na

sonic inward, disturbances from inside the com- This enforces the correct behavior of the pressure
putational domain must be allowed to propagate along the subsonic part of the outflow boundary.
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Figure 3: Schematic indicating the various types of boundary conditions encountered.

Typically values of K between 0.1 and 1.0 were solution was obtained, this adaptive procedure was it-
used. If K is taken too small or too large, conver- erated on to achieve an optimal grid-point distribution 0
gence to a steady state is delayed, for the case considered.

* Along the plate or wedge, the injected flow is sub-
sonic inward, except very close to the nose where Numerical Experiments
the flow can become supersonic for an x- i blowing
distribution. Thus one can specify the normal ve- Numerical experiments were conducted to obtain finite-

locity v., the tangential velocity (equal to zero for volume solutions of the Euler equations for comparison *
the cases considered), and the ratio of the injection with the analytical predictions for three different cases:

density to the free-stream density Aw (assumed * Strong interaction on a flat plate.
constant along the wall). The wall pressure can
then be determined by the R- Riemann invariant e Predominantly weak interaction on a flat plate
extrapolated from the interior back toward the wall
with the proper order of accuracy. Near the wall, * Predominantly weak interaction on a slender

the flow may not be locally isentropic; therefore, wedge

the approximate incremental form of the Riemann The case of strong interaction on a wedge was not con-
invariant sidered since the theory assumes that the wedge thick-

Ap - p~GAuj* ness is small in comparison to the blown layer thickness.

should be used for extrapolation; barred quantities Thus to lowest order, the solution for strong interaction

refer to quantities averaged across the cell inter- on a flat plate is recovered.

faces. The pressure then follows from For the case of strong interaction on a flat plate, good
agreement has been obtained. The parameters chosen

Pw -pj - pij aij (u. -u. = for this case are;
6 = 0.09,

l (Ap - Auj.)extrap. M,, = 20,
M ,62 - 3.24,

The analytical solutions were employed in generating

grids that would adequately resolve regions of interest P1W = Pinjeted =

in the flow field. Using the analytical predictions, grid Piree-tresm

points were clustered about the wall, the free shear layer Early results on a rectangular grid showed poor agree-
and the shock (Figure 4). The clustering was based on ment with the analytical solution. Cros-sectional pro-
an exponential spacing in the y direction, and an al- files of the flow varibles indicated the presence of a
gebraic spacing in the x direction. Once a converged viscous-like shear layer where the numerical code was
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Figure 4: Computational grid.
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Figure 5: Seperating streamline shapes for strong in-
teraction on a flat plate.

0.000
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* x

trying to model the free slip-stream. This is due to
the artificial dissipation associated with the numeri-
cal scheme. Restructuring the grid to better fit the Figure 6: Strong interaction pressure distribution along
flow field, and clustering grid points near the numerical a flat plate.
shear layer resulted in a reduction in the thickness of
this layer. As the thickness of the layer decreased, the

• numerical solution approached the analytical solution.

A converged second-order solution on a (83x91) grid
shows good agreement between the numerically deter-
mined blown-layer shape and the analytical prediction
(Figure 5). The pressure distributions along the plate
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Figure 7: Separating streamline shapes for weak inter- Figure 8: Weak interaction pressure distribution along
action on a fiat plate. a fiat plate.

also compare well with each other (Figure 6). Further to be;
grid refinements were attempted to verify that the nu- 6 0.1,
merical solution continued to approach the analytical a 0
solution as the mesh spacing decreased. It was found, a -8,
however, that by refining the grid too far, the numer- = 20,
ical dissipation can become so small that the solution
becomes unstable and exhibits features similar to those Al. = 1.
of a physically unstable shear layer (Figure 12). FFair agreement with the analytical solution was ob- Figure 9 shows good agreement between the analytical *

and numerical separation streamline shapes, but Figuretained for the case of weak interaction on a fiat plate. 10 shows that the numerically calculated pressure is
In this case, the blown layer thickness is thin in compar- h ows that pedicanlycally. pressureyic
ison with the shock layer. The shock is very weak, and igher than that predicted analytically. The analytical
lies roughly along the Mach lines. This case presents finite value of (M,) 2 af large t
two difficulties. The magnitude of the blowing is much fin valo ca are osrinuthna
smaller so high resolution of the singular blowing dis- resulting analytical pressure distribution,
tribution and flow features at the nose is even more Pw C 12"=Moo2 ,1.946+2.084--6z+...),
important. Also, the thinness of the blown layer makes 0o 1
the solution more sensitive to the existence of a numer-

ical shear layer whose thickness is grid dependent. The compares well with the numerically determined values
parameters chosen for this case are; (Figure 11).

6 = 0.01,

Further WorkM00 = 10,

Pi. = 1. With the validation study completed, the code will be
used to obtain flow solutions in cases where no ana-

A comparison between the analytical and the computa- lytical predictions exist. Of particular interest is strip
tiona separating streamline shapes shows shows a dis- blowing as a practical means to control the pressure
crepency of about five percent in the thickness of the distribution along the surface. The code has been ex-
blown layer (Figure 7). This discrepancy is also ap- panded to include the effects of physical viscosity and
parent in the pressure profiles along the plate (Figure heat conduction, i.e. to approximate the Navier-Stokes
8). equations. For validation of the code in viscous cases,

The last case considered was that of weak interaction analytical solutions are again avaiable [3]. A future pa-
on a wedge. For this case the parameters were chosen per will include some comparisons in the viscous regime.
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Trajectory Optimization of Earth.Launched Interceptors at Supercircular Speeds

R.M. Howe, E.G. Gilbert. Ping Lu, N.X. Vinh
The Uriversity of Michigan, Ann Arbor, Michigan 48109

ABSTRAT

0 An alternative to satellite-based kinetic energy weapons for intercepting ballistic missiles early in their trajectories is the use of
earth-based hyper-velocity rockets. Simple calculations show that with existing solid-propellant technology, rockets can be accelerated to
more than twice circular-orbit speeds with mass ratios of several thousand to one. For intercept distances ranging from 2000 to 5000
miles this translates into flight times of between 4 and 10 minutes. This permits interception of hostile ballistic missiles during their
ascent trajectory when vulnerability remains high. The use of miniature guided warheads in the defensive weapon reduces the interceptor
takeoff weight to within reasonable bounds. Parameters to be optimized include the mass ratios and thrusting time for each stage. the
coasting time between powered stages, and the parameters used to represent the time history of angle of attack. A quasi-Newton
minimization algorithm is utilized with penalty functions to implement the terminal constraints, as well as any other constraints. The
necessary gradients are computed numerically using finite differences. The multiple stage trajectories are calculated many thousands of
times faster than real time using an AD 100 multiprocessor computer. A VAX host computer implements the optimization algorithm and
inputs new parameters to the multiprocessor for each successive trajectory run. In this way the total required time for an overall
trajectory optimization consisting of several thousand trajectories is reduced from several hours to several minutes.

I. INTRODUCTION

The study of satellite-based kinetic-energy weapons for intercepting intercontinental ballistic missiles during their ascent trajectory
* represents one of the major efforts in the current U.S. Strategic Defense Initiative program. In this paper we consider an alternative to

space-based weapons, namely, the use of land or sea-based kinetic energy interceptors. When such interceptors arm based on the U.S.
continent, ranges of up to 5000 miles are needed. If the interceptors are sea launched, for example from submarines, the required
interceptor range may be reduced to as little as 2000 miles or less. In either case the interceptor must accelerate to very high speeds,
typically twice circular orbit velocity, in order to reach a target at these distances within several minutes.

In order to achieve these velocities, a rocket powered interceptor requires an overall mass ratio of several thousand to one. Even
so, the interceptor takeoff weight can be held within reasonable bounds by the use of miniature guided warheads. It is clear that such
large mass ratios can only be achieved by using between 4 and 7 rocket boost stages. In this paper we consider the problem of
optimizing a number of stage parameters and the angle of attack control in order to minimize the overall required mass ratio. The time
history of angle of attack is parameterized by letting the angle of attack for each thrusting stage vary linearly with time. Additional
parameters to be optimized include the thrust bum times for each stage and the coast times between stage burns. Although rockets of this
ivoc would normally be launched straieht uo. we also include the initial launch flieht-oath anile as a tarameter. This is based on the
assumption that a fairly rapid pitchover manuever can be performed immediately after launch to achieve the desired initial flight path
angle.

Once the trajectory optimization problem is converted to a parameter optimization problem, a quasi-Newton minimization
kIgorithm is utilized with penalty functions to implement the terminal constraints required for intercept, as well as any additional
constraints. The necessary gradients of the cost function with respect to the parameters are computed numerically using finite
differences. A complete multi-stage trajectory must be run using numerical integration for every evaluation of the cost function. For
each set of N par--- -eters this means that N+ I complete trajectories must be computed, one to evaluate the cost function for the given
parameter setting. ind N to evaluate the gradient of the cost function with respect to each of the N parameters. For the trajectory
optirruzation problems we have considered thus far, between 10 and 20 parameters have been used. Thus between 11 and 21 complete 4
to 7-stage trajectories must be computed numerically for a single iteration of the optimzation procedure. Also, each iteration utilizes a
line search which requires several additional trajectory computations. It has been found that between 200 and 400 iterations are needed
until satisfactory convergence to an optimal solution is achieved. It follows that several thousand trajectories must be computed for each
oprmuzation case considered.

In the next section scalar equations of motion for the interceptor trajectory are presented. Subsequent sections discuss theoptimization problem, its numerical solution, and results for a typical 4-stage trajectory optirmzation.

2. EOUATIONS OF MOTION

In order to reduce the trajectory computation times we will only consider the two dimensional equations of motion of the
interceptor. As a further simplification, we will neglect the effect of earth's rotation. We feel that neither of these simplificatons alter the
overall nature of the optirruzation problem. More comprehensive equations of motion can always be incorporated into the optimization
problem at a later time to improve the accuracy for those cases which may turn out to be of practical interest. Thus we consider the
interceptor rocket to be a point mass m moving in a plane which contains the center of a spherical, non-rotating earth with inverse square
gravitational field. A convenient and efficient method for representing the velocity state of the interceptor is in terms of the total velocity
and the fhght path angle with repect to the local horizontal [ 11. This leads to the following two-dimensional equations of motion:
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r = Vsiny ()

V
7 Cos (2)

T D g) r,
V - cos a ... . sin y (3)

m m

I [T L gn r,)V
y ,sin. ct -- :osy + - -Cos (4)

T
m = - (5)Is go

where

r = radial distance from center of earth 0 = polar angle
V = total velocity y = flight path angle

m = interceptor mass T = rocket thrust

a = angle of attack D = aerodynamic drag
L = aerodynamic lift r0 = reference radius

go = gravity acceleration at r = r0  Isp = specific impulse of rocket motor

The aerodynz nic lift, L. and drag, D, are given by the following formulas:

L = p V CL, D = pVA CD (6)

CL = Ccosa - CA sina , CD = Csina + CA cosa (7)

where

p = itmospheric density A = interceptor cross-sectional area

CL = lift coefficient CD drag coefficient

CN  normal force coefficient CA axial force coefficient

C,4 and CA , which r-present aerodynamic normal and axial force coefficients in body axes. can be approximated for slender bodies by
the following formu is [2]:

CN = sin2acos-. + 5 sinaIsinal, CA = 0.15 (8)

2 idA

where

= rocket length d = rocket diameter

The atmospheric density, p. in Eq. (6) is a function of the rocket alit~ude h, which is given by the equation

h = iR -1) r0 (9)

We have considered three different methods for approximating the variation of p with h. The first utilizes table lookup with linear
interpolation based on a tabulated standard atmosphere. This method introduces into the simulation a function with discontinuous slopes,
which has the potential of causing numerical difficulties in the descent algorithm (see Section 4). The second method uses the following
exponential approximation: 0

p = poe' h (10)

where l13 = 23,500 ft. and pO is the atmospheric density at sealevel. The third method uses the following analytic approximation [3):
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0

0 P/Po = [A0+ Alh+ A2h 2+ .4. A11h 11L 4  (ii)

with
A0 = 1.0000000000 At = 0.3393495800 x 10-1 A2 = -0.3433553057 x 10. 2

A3 = 0.5497466428 x 1O-3 A4 = -0.3228358326 x 10-4  A5 = 0.1 106617734 x 10- 5

A6 = -0.2291755793 x 10-7 A7 = 0.2902146443 x 10-9  A8 = -0.2230070938 x 10-"1
A9 =0.010575266x 10-13 AtI-= -0.2482089627 x 10"16 A = 0.2548769715 x 10- 9

* Eq. (II) is valid from 0 to 200 km. altitude and is accurate to better than 5 percent for altitudes up to 70 km. It is a considerably better
approximation than the exponential model in Eq. (10) and takes no longer to execute than the table lookup scheme. Thus it represents
our preferred approach.

Dimensionless versions of Eqs. (1) through (9) and Eq. ( 1) are used for the trajectory simulation of each inteceptor stage while
thrusting or coasting (T = 0). The state variables r. 6. V and y are continuous from one stage to the next. On the other hand, the state
variable m. which represents the mass of each stage, undergoes a discontinuous decrease each time a stage bums out and is dropped.
Note that the mass state m can be made conunuous by defining it as the mass of rocket fuel divided by the initial takeoff mass. The total

* instantaneous mass tor each stage is tnen the sum ot the tuel mass anta me inert mass. ine ourn tume ror eacn stagc. a win UiC ,.0;,
time per stage. consutute parameters to be opurimzed. For a given stage mass ratio, the stage bum tim determines the thrust level for the
stage. Thus the parameters representing stage burn times are equivalent to parameters representing stage thrust levels. As noted
previously, the time history of angle of attack is pararmeterized by letting it vary linearly for each stage. Thus an additional parameter per
stage is the tie-rate-of-change of angle of attack.

1. CONSTRAINTS AND OPTMIZATION PROBLEM FORMULATION

* To complete the statement of the optimization problem it is necessary to introduce certain constraints on the trajectory and its
defining parameters. The most obvious of these are the ones required for target interception. After final stage cutoff, the payload must
coast in such a manner that at the specified intercept time, tf, the position variables, r(tf) and O(tf), match those of the target.

There are several ways to implement the intercept conditions. One way is to impose them at the time of final-stage cutoff, to. If
r(t), 9(tc), r(tf), and e(tf) are known and the coast is an out-of-the-atmosphere conic transfer, the values tc) and V(tc) required for
intercept are determined by solving an appropriate Lambert problem. This can be done numerically by the methods given in [4). The
errors between the required and actual values of ltc) and V(tc) must be zero for intercept and these conditions give two equality
constraints on the trajectory at t = k.

We have found that unconstrained optimal conic coast trajectories re-enter the atmosphere or even pass through the earth's
surface. To assure that this doesn't happen, the minimum altitude during the coast is computed (as part of the solution of the Lambert
problem) and specified to lie outside the sensible atmosphere. The error between the computed minimum altitude and its specified value
constitutes, when set to zero, a third equality constraint.

Another way to implement the intercept condition is to integrate numerically the equations of motion of the final coast trajectory,
just as the equations for the previous stages were integrated. In this case the errors between the inter-eptor coordinates r(tr), 8(t,) and the
target coordinates at the final time tf are set equal to zero to form two equality constraints. As before, a minimum allowable altitude
outside the sensible atmosphere can be chosen for the final coast trajectory. This minimum altitude is then the third constraint.
Alternatively, the effect of the atmosphere itself, which is included in the trajectory equations. will ensure that a realistic altitude
constraint is enforced when the final coast trajectory equations are integrated. Indeed, this is the required approach in the aero-assisted
case, where the final coast trajectory actually utilizes aerodynamic down lift to hold the trajectory at near constant altitude in the presence
of supercircular velocity. In Section 5 we consider an example of this type.

In addition to the equality constraints on the trajectory, inequality constraints may be imposed on some of the problem
parameters. For example. an initial stage acceleration. AT, may have upper and lower limits, Amax and Aomm. To avoid treaung these
constraints directly in the algorithmic process, we impose them implicitly by introducing a nonlinear transformation of a new parametric
variable. In the case just mentioned a suitable transformation is

T A, + A Amu- Amn
AT max2 min + 2 sm aT (12)

where aT is the new unconstrained parameter.

Putting all of the above details together in a compact notation yields a problem of the form

rmnimize f(z) subject to g1(z) = 0, i = 1,2,3. (13)

Here: f(z) is the ratio of the launch mass to the payload mass, the gi(z) are the errors in meeting the equality constraints, and z is a
vector whose components are the -unconstrained" parameters arising from models described in Section 2. Given z, it is clear that f(z)
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and gi(z) may be evaluated by integrating the equations of motion, computing m(tc), 7ttc). V(). rtc), and 8(tc), and solving the Lambert
problem determuned by the target specification. When the alternatve method involving numerical integration of fe final coast trajectory
is used to implement the intercept condition, f(z) is still evaluated from m(tc), but gi(z) is evaluated from r(tf) and 0(t).

Our algorithm for the numerica solution of (13) requires the gradient (collection of N first partial derivatives) of functions such as
f(z). While it is possible to derive formulas for the partials (they may be written in terms of the differential equations adjoint to the
linearized equations of motion), they are exceedingly complex because of the nonlinear functions appearing in Eqs. (I) - (9) and (l1).
This motivates our desire to use finite differences for the gradient calculations.

4. NUMERICAL SOLUTION OF THE OPTIMIZATION PROBLEM

A variety of numerica! approaches have been used to solve trajectory optimization problems with equality constraints. These
include: (1) gradient projection methods. (2) Newton-Raphson solution of the necessary conditions. (3) penalty function methods.
Approach (1) gives slow convergence, approach 12) requires second derivatives of problem data and good initial estimates; approach (3)
leads to badly conditioned (though unconstrained) minimizaton problems. We have followed approach (3). attacking its disadvantage by
using a rapidly convergent quasi-Newton algorithm [5,6] and an augmented Lagrangian for the penalty function.

In the usual penalty function method approximate solutions of (13) are sought by algorithmic minimization of

Fp(z) = f(z) 4- ,i(g(z)] (14)

It can be shown (5,61 that the equality condit;,kns can be accurately enforced by choosing the penalty coefficients, ti > 0 . to be
sufficiently large. In practice, numerical hazards, such as slow convergence or convergence to false minima, are reduced by minimizing
Fp(z) several times with successively larger values for the penalty coefficients. At each successive stage the starting point for the
minimization algorithm is taken as the solution point from the previous stage. Even so, the conditioning of Fp(z) worsens [5,61 as the
, i increase and there is a practical limit to the accuracy which can be achieved. Numerical errors in the minimization algorithm and the
evaluation of Fp(z) and its gradient eventually become limiting.

In the augmented Lagrangian approach Fp(z) is replaced by

FL(Z) = f(z) + X X g1(z) .I [g1 (z)]2  (15)

where the Xi are real numbers approximating the Lagrange multipliers for the minimization problem (13). When FL(z) is minimized, it is
possible to satisfy the equality constraints accurately with much smaller values for the penalty coefficients [5.6]. The resulting improved
conditioning of FL(z) reduces the bad effects of the numerical errors. Again, it is advantageo,,s to solve a sequence of minimization
problems with successive initializations, where in this case both the Xi and the 4i are adjusted. We have used the adjustment scheme
proposed by Powell and described on page 134 of [5] with good results. It eliminates the need for human intervention in selecting the
parameters X and Lt and improves accuracy of equality constraints over the simple penalty function approach by at least an order of
magnitude.

Because of the highly nonlinear character of FL(z) and its poor conditioning, it is necessary to pay careful attention to the
procedure for its unconstrained minimization. Certainly, the second order properties of FL(z) must be taken into account. We have
found the BFGS, quasi-Newton program of Shanno and Phua (7] to be effective. Its line search has been modified to compute
derivatives along the search direction directly by forward differences. This eliminates the need for gradient evaluations during the line
search.

The performance of a quasi-Newton algorithm is predicated on the smoothness of the function being minimized. The function
should be at least twice continuously differentiable. Here, the representation of empirical data appearing in the equations of motion is
importaot. See, for example, the comments in Section 2 on computing the atmospheric density by table lookup with linear interpolation.

Another concern is the forward difference computation of the partial derivatives of FL(z). If the step size is too small, the effects
of round off errors are exacerbated; if the step size is too large, truncation errors become appreciable. If the machine precision is E. it can
be argued (6] that the step size should be the order of E 1/2. In our case the machine precision E _= I0-12 is determined by the AD 100,
which has a 40 bit significand. We have found that the step size 10"6 is reasonable, but that experimentation with the step size can
improve the accuracy noticeably. Even better accuracy has been obtained by using central differences for the partial derivatives. It
reduces the effects of round-off errors because a larger step size may be used for the same truncation error (6]. Of course, 2N + I
evaluations of FL(z) are then needed to obtain FL(Z) and its gradient.

It should be mentioned that the trajectory state equations were solved numerically using fourth-order Runge-Kutta integration
with a fixed step size. A single-pass predictor method with a Gear RK-4 startup algorithm was found to give better performance in some
cases [81 and will be further investigated in later studies.
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5. EXAMPLE OPTIMAL TRAJECTORY SOLLTIONS

Two example optimal trajectory solutions are considered in this section. @0) - e0, the total change in polar angle of each
trajectory, is set equal to 30 degrees. This corresponds to an interceptor range of 2094 miles. The total time of interceptor flight is
prescribed to be 300 seconds and the target is intercepted at an altitude of 200 km. Stage takeoff weight is equal to 10,000 kg and
physical parameters are assumed to be similar to those of a Minuteman Ill. The specific impulse 1, of the rocket engines is equal to 300
seconds, and the ratio of initial fuel weight to inert weight for the rocket motor of each stage is assumed to be 10. The intercept condition
is implemented by two equality constraints that require the interceptor coordinates at the final time tf to match the target coordinates. Two
cases are considered. aeroassisted and non-aeroassisted. In the aeroassisted case the final coasting stage reenters the earth's atmosphere
with a controlled angle of attack which can be used to generate downward lift. In the non-aeroassisted case the angle of attack of the final

• coasting stage is maintained at zero, which means that aerodynamic forces can only cause drag. In each case there are 4 booster stages.
with equal mass ratios prescribed for each stage. The common mass ratio is therefore a parameter. As noted earlier, the performance
objective is to maximize the final payload weighL The results are summarized in Table 1.

TABLE 1. Optimal Trajectory Data for 4-stage Interceptor

Aeroassisted Non-aeroassisted

Final optimal payload weight 9.73 kg 5.63 kg
Mass ratio per stage 3.98 4.33
Minimum altitude in final coast to target 93.82 km 96.82 km
Burnout speed (Vc = circular orbit speed) 1.766 Vc 1.775 Vc

Burnout altitude 98.24 km 155.04 km

Launch flight path angle, yo 82.8 deg 60.6 deg

Initial thrust acceleration, stage 1 13.05 g 9.28 g
Burn time, stage 1 17.21 sec 24.86 sec
Coast time between stages 1 and 2 6.49 sec 1.84 sec
Initial thrust acceleration, stage 2 23.37 g 12.93 g

Burn time, stage 2 9.61 sec 17.84 sec
Coast time between stages 2 and 3 5.35 sec 2.41 sec
Initial thrust acceleration, stage 3 31.40 g 23.87 g
Burn time, stage 3 7.15 sec 9.67 sec
Coast time between stages 3 and 4 14.85 sec 56.74 sec
Initial thrust acceleration, stage 4 37.52 g 31.67 g
Burn time, stage 4 5.99 sec 7.29 sec
Final coast time to target 233.67 sec 179.36 sec
Total flight time 300 sec 300 sec
Total distance 2094 miles 2094 miles

From the table it is clear that the optimal aeroassisted trajectory yields a significantly larger payload, 9.73 kg versus 5.63 kg for
the non-aeroassisted case. In Figure 1 are shown time history plots of velocity, flight path angle, dynamic pressure and angle of attack
for the aeroassisted opumal trajectory. Figure 2 shows altitude versus polar angle plots for both the aeroassisted and non-aeroassisted
trajectones. Note how the aeroassisted trajectory is able to maintain an approximately constant altitude of some 95 km over more than
half of the final coast to intercept. This is possible despite the supercurcular speed because of the aerodynamic down lift, which reaches a
maximum of 1.87 g during this portion of the trajectory. The maximum total downward acceleration, including gravity., is therefore
2.87g. Since the centrifugal acceleration in g units is Vc2 (VC is the circular-orbit velocity), it follows that constant altitude (i.e.. a
circular orbit) will, in the presence of 1.87 g of down lift. be maintained at a velocity of (2.87)1/2 or 1.694V c . Reference to the plot of V
versus time in Figure I shows that this is indeed the case. On the other hand we see in Figure 2 that the non-aeroassisted trajectory must
climb to over 150 km before the final stage burn in order to avoid significant penetration of the atmosphere. This results in a
considerable more expensive trajectory in terms of required mass ratio.

The plot of angle of attack a versus time in Figure I shows clearly the linear variation of a for each stage. Note that zero angle
of attack is assumed during the coast between stage burns. This is based on the assumption that the interceptor is aerodynamically stable
during these coasts with no active thrust vector control. Means of active attitude control would be required to maintain the linear angle of
attack variation shown for the final coast to intercept. One option for achieving this would be to provide thrust vector control utilizing a

low level of thrust during this final portion of the trajectory. Such thrust will probably be required in any event to provide course
corrections to intercept the target. When this is included in the overall trajectory optimization, it may very well produce a non-
aeroassisted optimal trajectory which is competitive with the aeroassisted case, since now a downward component of thrust can be used
to replace the aerodynaruc down lift.
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Figoire 1. Time history plots for the aeroassisted optimal trajectory.

In this paper we have described techniques for computing the optimal trajectories of earth-Launched interc:eptor rockets which ame
accelerated to over twice orbital velocity. The objective of the optimization is to maximize the payload with a given interceptor takeoff
weight. Terminal constraints have been enforced using penalty functions. The required gradients of the cost functions have been
computed numerically using finite differences. Through the use of a special multiprocessor com puter. the AD 100,.in conjunction with a
VAX host cornpute, we have been able to reduce the tmec required for each trajectory optimzaiton fro hours to minutes.

Preliminary results have been presented for a 4-stage example. It is found that allowing a coast period between booster stages
and using an aeroassisted trajectory to generate down ift during the final coast segmecnt improves the optimal payload significantly.

•Future research efforts will include parametric studies of the effect of different prescribed flight times, target range and altitudle. payload
mass, and refined aerodynamic and propulsion models.
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ABSTRACT

Simulation techniques are described for determining the optimal control of earth-launched
interceptor rockets which are accelerated to over twice orbital velocity. Each optimization case
requires many thousands of trajectory calculations. In order to reduce the overall computational
time the multiple stage trajectories are calculated using an AD 100 multiprocessor computer. The
VAX host computer implements the optimization algorithm and inputs new parameters to the AD
100 for each successive trajectory run. The necessary derivatives in the optimization process are
computed numerically on the AD 100 using finite differences. A quasi-Newton minimization
algorithm is used with penalty functions to implement the terminal constraints. For a prescribed
intercept time of flight the overall mass ratio is minimized with respect to the time history of angle
of attack and the individual stage burn and coast times. A 5th-order single-pass predictor/corrector
integration method with a Gear RK-4 startup algorithm for each stage is shown to provide very fast
and accurate trajectory solutions. Using the AD 100 for the trajectory calculations reduces the
overall time required for each optimization to minutes, compared with hours when the VAX alone
is used.

1. Introduction

An alternative to satellite-based kinetic energy weapons for intercepting ballistic missiles
early in their trajectories is the use of earth-based hyper-velocity rockets. Simple calculations show
that with existing solid-propellant technology, rockets can be accelerated to more than twice
circular-orbit speeds with mass ratios of several thousand to one. For intercept distances ranging
from 2000 to 5000 miles this translates into flight times of between 3 and 10 minutes. This in turn
permits interception of hostile ballistic missiles during their ascent trajectory when vulnerability
remains high. The use of miniature guided warheads in the defensive weapon reduces the
interceptor takeoff weight to within reasonable bounds.

* In order to achieve interceptor velocities of twice circular orbit speed or more, it is
necessary to utilize between 4 and 7 rocket boost stages. In this paper we consider the problem of
optimizing a number of stage parameters and the angle of attack control to minimize the overall
required mass ratio. The time history of angle of attack is parameterized by letting the angle of
attack for each thrusting and coasting stage vary linearly with time. Additional parameters to be
optimized include the thrust burn times for each stage and the coast times between stage burns.
Although rockets of this type would normally be launched straight up, we also include the initial

* launch flight-path angle as a parameter. This is based on the assumption that a fairly rapid
pitchover manuever can be performed immediately after launch to achieve the desired initial flight
path angle.

Once the trajectory optimization problem is converted to a parameter optimization problem,
a quasi-Newton minimization algorithm is utilized with penalty functions to implement the terminal
constraints required for intercept. The necessary gradients of the cost function with respect to the
parameters are computed numerically using finite differences. A complete multi-stage trajectory

* must be run using numerical integration for every evaluation of the cost function. For each set of
N parameters this means that N+ 1 complete trajectories must be computed, one to evaluate the cost
function for the given parameter settings, and N to evaluate the gradient of the cost function with
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respect to each of the N parameters. For the trajectory optimization problems we have considered
thus far, between 10 and 20 parameters have been used. Thus between I I and 21 complete 4 to 7-
stage trajectories must be computed numericaly for a single iteration of the optimization procedure.
Also, each iteration utilizes a line search which requires several additional trajectory computations.
It has been found that between 200 and 400 iterations are needed until satisfactory convergence to
an optimal solution is achieved. It follows that several thousand trajectories must be computed for
each optimization case considered. Typical overall computation times for a single case turn out to
require many hours when using general-purpose computers such as a VAX or Apollo. Such long
computational times are not only expensive, but also frustrating when one is trying to perform
parametric studies which may require many optimization cases to be run. For this -eason we have
turned to the AD 100 computer for solving the most computationally intensive part of the problem,
which is the trajectory calculation associated with the many evaluations of the cost function.

The AD 100 is a multiprocessor with special architecture and software which has been
optimized for the solution of ordinary, nonlinear differential equations. The computer uses emitter-
coupled (ECL) logic with floating-point word lengths of 53 and 65 bits. It can perform a 53-bit
floating-point multiply in 0.075 microseconds and a 65-bit floating-point add in 0.1
microseconds. The equivalent overall instruction rate exceeds 100 MIPS (millions of instructions
per second). Because of the short multiply and add times, the AD 100 is extremely fast in the
solution of scalar problems. Although the principal application of the AD 100 has been the real-
time simulation of complex dynamic systems, such as aircraft and missiles, its overall speed can
also be exploited in the sort of optimization problems described in this paper.

In addition to using the AD 100 for the trajectory computations, we have devoted
considerable effort to choosing integration algorithms which are both accurate and fast running.
We have also attempted to use efficient coordinate systems in which to write the scalar equations of
motion for the interceptor trajectory. In the next section these equations are presented. Following
this, Section 3 describes the integration methods wl'ch were found to be particularly fast and
accurate. Subsequent sections discuss the optimization problem, its numerical solution, and results
for a typical 4-stage trajectory optimization.

2. Equations of Motion

In order to reduce the trajectory computation times we will only consider the two
dimensional equations of motion of the interceptor. As a further simplification, we will neglect the
effect of earth's rotation. We feel that neither of these simplifications alter the overall nature of the
optimization problem. More comprehensive equations of motion can always be incorporated into
the optimization problem at a later time to improve the accuracy for those cases which may turn out 0
to be of practical interest. Thus we consider the interceptor rocket to be a point mass m moving in
a plane which contains the center of a spherical, non-rotating earth with inverse square gravitational
field. A convenient and efficient method for representing the velocity state of the interceptor is in
terms of the total velocity and the flight path angle with repect to the local horizontal [1].
However, at takeoff, when the interceptor velocity is zero, this results in a singularity in the flight-
path angle rate which can cause numerical difficulty. We therefore chose to represent the velocity
state by means of the horizontal component u and vertical component w of the total interceptor
velocity [2]. When polar coordinates are used for the position state variables, this leads to the
following two-dimensional equations of motion:

uw r 11
u = - +[ (T-D) cos (ca+y) - L sin (c+y) - (1)

r m

2 2
2 g,~r2  1(2

w= -- - + [(T-D) sin (a+y) + L cos - (2)
r 2 ( m

r
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where
u = horizontal velocity component w = vertical velocity component
r = radial distance from the center of earth 0 = polar angle
rn = interceptor mass a = angle of attack
y = tan-I(w/u = flight path angle T = thrust, constant for each stage
D = aerodynamic drag, body axis L = aerodynamic lift, body axis
r0 = radius of earth go = gravity acceleration at sea level
Isp = specific impulse of rocket motor

For convenience we choose to rewrite Eqs. (1) through (5) in terms of dimensionless state
variables U. W, R and Nt in accordance with the following definitions:

u w r mU=- W =- R=- M = (6)

where r is the circular orbit velocity at r0 and m0 is the initial mass of the stage.4stage.

In terms of the dimensionless state variables the equations of motion can be written as

U2 = -o "U + (AT - AD)cos(a+Y)-ANsin(a+Y)] (7)

= .r W (9)
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AN = sin 2acos +. sina Isin al (14)

(15)

= tan •  (16)

where 0
AT - th ust acceleration in gO units AD - body axis drag acceleratio in go units
AN - body axis lift acceleration in go units CA . body axisdragcoefci t
A = rocket cross-sectional area p - atmospher density
po- sea-level amiospheric density V = dimenionles total Velocity
X rocket length d - rocket diameter

Reference to equations (7), (8), (13) and (14) shows dwt the aerodynamic drag and normal
forces are calculated, respectively, along and perpendicular to the body axw. of the rocket Eqs.
(13) and (14) are simple but fairly good approximadons for the aerodynamic forces on slender
bodies [3].

The atmospheric density ratio p/po in Eq. (13) is a function of the rocket altitude h, which 9
is given by the equatioc-

h = (R-1) ro (17)

We have considered three different methods for approximating the variation of p/pO with h. The
first utilizes table lookup with linear interpoladon based on a tabulated standard atmosphere. This
method introduces into the simulation a function with discontinuous slopes, which has the potential
of causing numerical difficulties in the descent algorithm (see Section 5). The second method uses
the following exponential Wroximaon:

Po .= eph (18)

where 1/ - 23,5W ft. The third method uses the following analytic approximation [4]:

P/Po - [AOo+ Ath+ A2h2 + .... + Al hll "4  (19)
with

M = 1.0000000000 Al = 0.3393495800 x 10-1 A2 = -0.3433553057 x 10-2

A3 = 0.5497466428 x 10-3  A4 = -0.3228358326 x 104  A5 - 0.1106617734 x 10-5

A6 = -0.2291755793 x 10-7  A7 = 0.2902146443 x i0 9  AS = -0.2230070938 x l0
A9 = 0.1010575266 x 10"13 A10 - -0.2482089627 x 10"16 All = 0.2548769715 x 10- 19

4



Eq. (19) is valid from 0 to 200 km. altitude and is accurate to better than 5 percent for altitudes up
to 70 kn. It is a considerably better approximation than the exponential model in Eq. (18) and
takes no longer to execute than the table lookup scheme. Thus it represents our preferred
approach.

Eqs. (7) through (17), along with either (18) or (19), are used for the trajectory simulation
of each inteceptor stage while thrusting or coasting (T = 0). The state variables R, e, U and W are
continuous from one stage to the next. On the other hand, the state variable M representing the
dimensionless mass of each stage is reset to I at the initiation of each new stage. From Eq. (12) it
follows that AT represents the thrusting acceleration in go units for each stage at engine ignition.
This is an important optimization parameter, since for a given mass ratio it determines the thrusting
time for the stage. Note that the dimensionless mass state can be made continuous by defining it as
the mass of rocket fuel divided by the initial takeoff mass. The total instantaneous mass for each
stage is then the sum of the fuel mass and the inert mass. As noted previously, the time history of
angle of attack is parameterized by letting it vary linearly for each stage. Thus a second parameter
per stage is the time-rate-of-change of angle of attack.

3. Numerical Integration Method

Since each trajectory optimization requires the computation of many thousands of
trajectories, there is a great deal of leverage on selecting accurate and efficient numerical integration
algorithms for the trajectory optimization. Based on theoretical considerations and computer
experimentation, we decided to select a single-pass 5th-order Adams-Moulton (SPAM-5)

* predictor-corrector algorithm as our principal method. In the single-pass Adams-Moulton method
the derivative of each state is always based on the predicted rather than the corrected value of the
state [5]. To illustrate the method we consider the state equation

R = F[X,U(t)] (20)

* We define the estimate of the derivative F at the kth integration step based on the estimated state at
the kth step by the formula

A A

Fk = F[Xk, U(kh)] (21)

where h is the integration step size. From previously computed derivative estimates we compute
0 an estimate for the state Xn+l based on Xn with the following Adams-Bashforth 5-th order

predictor formula:

A h A A A A A

X+ - X, + 7 (1901F - 2774F 0 1 + 2616F,, 2 - 1274F,,3 + 251F 0 4) (22)

A A

Using X,+ 1 from Eq. (22), we compute F,+ 1 andthen X+, with the corrector formula

h A A A A A

XG+1 = X0 + -L (251F0+1 + 646F" -264Fn I + 106Fn2 - 19Fa-3 (23)
720 0. Z3) (3

In the conventional AM-5 integration method, the predictor formula corresponding to Eq. (22)
* utilizes derivatives based on the actual states Xn rather than the state estimates used here. This

requires a first pass through the state equations to compute Fn from Xn, a computation which is
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avoided in this single-pass method. In the conventional AM-5, then, the derivatives Fn through
Fn.3 are also based on actual states. Only Fn+I is based on the estimated state obtained from the
predictor pmL.

It should be noted that both the predictor formula in Eq. (22) and the corrector formula in
Eq. (23) are derived from the area under a quartic time function which passes through each of the
five derivatives. The resulting integration algorithm is therefore 5th order. The method of z
transforms can be used to determine the characteristic root errors introduced by numerical
integration methods [51. For the SPAMI-5 represeated by Eqs. (22) and (23), the fractional error in
characteristic root is given approximately 0

X. - . 3 ,
a - (X -(h) JXhl << 1 (24)

X160
Here X is the characteristic root of the continuous system being simulated and X.* is the equivalent
characteristic root of the digital system when using the SPAM-5 integration with a step size of h.

Reference to Eq. (22) shows that the 5th-order predictor algorithm presents a startup 0
problem, since at t = 0 the previous 4 derivatives are unknown. The same startup problem
reappears every time there is a step change in the state-variable derivative, such as will occur in our
trajectory simulation during staging. Actually, the 5th-order predictor will in fact only exhibit 5th-
order accuracy when state variable derivatives up to order 4 are continuous. Thus it is important to
represent the time variation of angle of attack for each stage by functions with appropriate
smoothness, such as the linear time function we have assumed here.

One method of solving this startup problem is to use a Runge-Kutta algorithm for the first
four integration steps in each stage before switching to the 5th-order predictor-corrector method.
Unfortunately, this will add a large number of integration passes to the simulation of each stage
and negate much of the speed advantage inherent in the single-pass predictor-corrector method.
For example, using RK-4 as the startup method for the first four integration steps requires 16
passes through the state equations, and the resulting states will only be accurate to the 4th power of
the step size h. If we use a total of 20 integration steps for each stage (using SPAM-5 we have *
found that this yields accuracies of the order of one part per million), then the total number of
passes through the state equations per stage will be 4x4 + 16 = 32. Thus standard RK-4, when
used for the first 4 steps as a startup method, requires roughly half of the overall computer
execution time for the 20-step simulation of each interceptor stage.

A much more efficient startup method which at the same time provides 5th-order accuracy
is an RK-4 startup algorithm due to Gear (6]. Here an RK-4 method which requires 5 passes
through the state equations is used to compute FO, F0', Fo", and F0 "', i.e., the first four initial
derivatives of the state variable X. These derivatives are used in power series formulas to compute
the state X2 two steps in the future, as well as the derivatives F2, Ft, F.1, and F-2 . All the startup
derivatives are now available to initiate the SPAM-5 algorithm for subeqent integration steps. For
a total of 20 integration steps per stage the total required number of passes through the state
equations is now 5 + 18 = 23. The equations for the Gear RK-4 startup algorithm, when used
with a step size H, are the following, where XnH = X(nH), UnI- = U(nH):

kI = H.F(Xo, U0 ) ; XH = X0 + kI

k2 = H F (XH, UH) ; X2H =XO + 2 k2
k3 = H.F(X2H, U2H) ; X3H = XO + (3/4)(k+3k3) (25)

k4 = H F (X3H, U3H) ; X4H =XO + (1/2) (kl + 2k2 + k3 + 4k4)

k5 = H'F(X4H, UH) ; X5H = XO + (1/12)(kI+24k 2 +3k 3 +8k 4 +24k 5 ) 0
k6 = H F (XH, U5H)
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The formulas for the derivatives at t = 0 are given by

H.Fo - kt

H2 " F0 = (1/6) (- 5k + 3k3 + 14k4 -18k5 + 6k6)

H3 FO" = (1/9) (4kI - 4k3 - 19k4 + 30k5 - 1lk6) (26)

H4 " F0'"= (1/9) (- k1 + k3 + 7k4 - 12k5 + 5k6)

We note that the step size H for these calculations can be chosen completely independently of the
step size h that is used for subsequent integration steps. From XO and its first four derivatives in
Eq. (25) we calculate X2 and the derivatives F2, FI, F-1 , and F-2 from the following power series
formulas:

X2 = x0 + 2(h/H)(HF0) 2(h/H) (H F0 ) + Vh/H) (H F0 ") + 2hH (H 4Fo'")

F2 = Fo + 2(h/H2)(H 2F0 ') + 2(h 2/H3)(H 3 F0 ") + 3(h3/Ie)(H4Fog#$)

F = Fo + (hI 2)(I-Fo') + I (h2fI.)(H3F0,,) + (h3/4)(l Fo,,,)

1 00 2 6 ' 0

Fo = F(Xo, UO) (27)

F = F- (hH 2)(H 2 F') + (h2 /H3 )H 3 F0") -(h 3/H")(H4 F0 "')

F.2 = F0 - 2(h/H2)(H 2Fo') + 2(h2/H3)(H3 Fo") --±(h 3/H4 )(H4Fo ''')

The choice of step size H in the above Gear RK-4 startup equations should be made small enough
to ensure that truncation errors are negligible but not so small that roundoff errors predominate. In
our trajectory simulations we let H = h/8.

Starting with the initial state X0 at the beginning of each stage, Eqs. (23), (26) and (27) are
used to compute X2 and the derivatives F2, F1 , F0, F. 1, and F-2. For all subsequent steps in the

* stage simulation, the SPAM-5 integration algorithm of Eqs. (22) and (23) is used. Since the time
derivative of the mass state M is the constant given in Eq. (11), simple Euler integration can be
used for that integration.

We recall that the SPAM predictor-corrector method uses a fixed integration step size.
Since the acceleration components given by Eqs. (7) and (8) are proportional to the inverse of the
dimensionles mass M it is clear that when M becomes small the integration truncation errors will

* become larger for a given integration step size h. However, the optimal solutions are unlikely to
permit the final M for each stage to become less than 0.2 to 0.3. Under these conditions the
performance improvement which would be achieved by using a smaller step size toward the end of
each stage burn is more than offset by the increased computational requirements associated with
integration methods suitable for a variable step size.

As noted earlier, we have found that the SPAM-5 method with the Gear RK-4 starter
provides accuracies of the order of one part per million when 20 integration steps per stage are
used. For a given mass ratio the burn time for each stage is determined by the thrust and hence the
initial thrust acceleration. The integration step size h for each stage is therefore equal to the stage
burn time divided by 20.
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4. Constraints and Final Problem Formulation

To complete the statement of the optimization problem it is necessary to introduce certain
constraints on the trajectory and its defining parameters. The most obvious of these are the ones
required for target interception. After final stage cutoff, the payload must coast in such a manner
that at the specified intercept time, tf, the position variables, R(tf) and O(tf), match those of the
target.

There are several ways to L.ipJerent the intercept conditions. We have imposed them
at the time of final-stage cutoff, tc. If R(tc), e(tc), R(tf), and O(tf) are known and the coast is an
out-of-the-atmosphere conic transfer, the values fltc) and V(tc) required for intercept are
determined by solving an appropriate Lambert problem. We do this numerically by the methods
given in [7]. The errors between the required and actual values of y(tc) and V(tc) must be zero for
intercept and these conditions give two equality constraints on the trajectory at t = tc.

We have found that unconstrained optimal conic coast trajectories re-enter the atmosphere *
or-even pass through the earth's surface. To assure that this doesn't happen, the minimum altitude
during the coast is computed (as part of the solution of the Lambert problem) and specified to lie
outside the sensible atmosphere. The error between the computed minimum altitude and its
specified value forms, when set to zero, a third equality constraint.

In addition to the equality constraints on the trajectory, inequality constraints may be

imposed on some of the problem parameters. For example, an initial stage acceleration, A0 T, may *
have upper and lower limits, Amx and Amin. To avoid treating these constraints directly in the
algorithmic process, we impose them implicitly by introducing a nonlinear transformationof a new
par, metric variable. In the case just mentioned a suitable transformation is

0 AmaI+ A Am= " Amin
AT2 + 2 s (28)

where aT is the new unconstrained parameter.
Putting all of the above details together in a compact notation yields a problem of the form:

minimize f(z) subject to gi(z) = 0, i = 1,2,3. (29)

Here: f(z) is the ratio of the launch mass to the payload mass, the gi(z) are the errors in meeting the
equality constraints, and z is a vector whose components are the "unconstrained" parameters
arising from models described in Sections 1 and 2. Given z it is clear that f(z) and gi(z) may be

evaluated by integrating the equations of motion, computing M(tc), 7(tc), V(tc), R(tc), and 0(tc),
and solving the Lambert problem determined by the target specification.

Our algorithm for the numerical solution of (29) requires the gradient (collection of N
first partial derivatives) of functions such as f(z). While it is possible to derive formulas for the
partials (they may be written in terms of the differential equations adjoint to the linearized equations
of motion), they are exceedingly complex because of the nonlinear functions appearing in Eqs. (7)
- (1'5). This motivates our desire to use finite differences for the gradient calculations.

5. Numerical Solution of the Optimization Problem

A variety of numerical approaches have been used to solve trajectory optimization problems -
with equality constraints. These included: (1) gradient projection methods, (2) Newton-Raphson
solution of the necessary conditions, (3) penalty function methods. Approach (1) gives slow
convergence; approach (2) requires second derivatives of problem data and good initial estimates.

8



approach (3) leads to badly conditioned (though unconstrained) minimization problems. We have
followed approach (3), attacking its disadvantage by using a rapidly convergent quasi-Newton
algorithm [8,9] and an augmented Lagrangian for the penalty function.

In the usual penalty function method approximate solutions of (29) are sought by
algorithmic minimization of

Fp(z) = f(z) + .[gi(z)] (30)

It can be shown [8,9] that the equality conditions can be accurately enforced by choosing the
penalty coefficients, pi > 0, to be sufficiently large. In practice, numerical hazards, such as slow
convergence or convergence to false minima, are reduced by minimizing Fp(z) several times with
successively larger values for the penalty coefficients. At each successive stage the starting point
for the minimization algorithm is taken as the solution point from the previous stage. Even so, the
conditioning of Fp(z) worsens [8,9) as the gi increase and there is a practical limit to the accuracy
which can be achieved. Numerical errors in the minimization algorithm and the evaluation of Fp(z)
and its gradient eventually become limiting.

In the augmented Lagrangian approach Fp(z) is replaced by

FL(z) = f(z) + ± .igi(z) + ,j[gi(z)2 (31)

where the Xi are real numbers approximating the Lagrange multipliers for the minimintion problem
(29). When FL(z) is minimized it is possible to satisfy the equality constraints accurately with
much smaller values for the penalty coefficients (8,91. The resulting improved conditioning of
FL(z) reduces the bad effects of the numerical errors. Again, it is advantageous to solve a
sequence of minimization problems with successive initializations, where in this case both the Xi
and the pti are adjusted. We have used the adjustment scheme proposed by Powell and described
on page 134 of (8] with good results. It eliminates the need for human intervention in selecting the
parameters Xi and gi and improves accuracy of equality constraints over the simple penalty
function approach by a factor of at least 10.

Because of the highly nonlinear character of FL(z) and its poor conditioning it is
necessary to pay careful attention to the procedure for its unconstrained minimization. Certainly,
the second order properties of FL(z) must be taken into account. We have found the BFGS, quasi-
Newton program of Shanno and Phua (10] to be effective. Its line search has been modified to
compute derivatives along the search direction directly by forward differences. This eliminates the
need for gradient evaluations during the line search.

TIhe performance of a quasi-Newton algorithm is predicated on the smoothness of the
function being minimized. The function should be at least twice continuously differentiable. Herm,

* the repreentation of empirical data appearing in the equations of motion is important. See, for
example, the comments in Section 2 on computing the atmospheric density by table lookup with
linear interpolation.

Another concern is the forward difference computation of the partial derivatives of
FL(z). If the step size is too small, the effects of round off errors are exacerbated; if the step size is
too large, truncation errors become appreciable. If the machine precision is e, it can be argued [91
that the step size should be the order of 0112. In our case the machine precision E = 10-12 is
determined by the AD 100, which has a 40 bit significand. We have found that the step size 10.6 is
reasonable, but that experimentation with the step size can improve the accuracy noticeably. Even
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better accuracy has been obtained by using central differences for the partial derivatives. It reduces
the effects of round-off errors because a larger step size may be used for the same truncation error
[9]. Of course, 2N + I evaluations of FL(z) are then needed to obtain FL(z) and its gradient.

6. Example of Optimal Trajectories

In this section we consider the results of a typical optimization case. 0(tf) - 00, the total
change in polar angle of the trajectory, is set equal to 30 degrees. This corresponds to an
interceptor range of 2094 miles. The total time of interceptor flight is prescribed to be 300 seconds *
and the target is intercepted at an altitude of 200 km. Stage takeoff weight is equal to 10,000 kg
and physical parameters are assumed to be similar to those of a Minuteman IMI. The specific
impulse Isp of the rocket engines is equal to 300 seconds, and the ratio of initial fuel weight to inert
weight for the rocket motor of each stage is assumed to be 10. The constraint on minimum altitude
during the final coast to the target is set at 60 km. The number of booster stages is equal to 4, with
equal mass ratios prescribed for each stage. The common mass ratio is therefore a parameter. As
noted earlier, the performance objective is to maximize the final payload weight. Two cases are
considered, one in which there is no coasting between booster stages, and the second in which
coasting is allowed. For the two cases the number of parameters to be optimized is 11 and 17,
respectively. The results are summarized below.

No coast between stages Coast between stago,

Final optimal payload weight 7.73 kg 8.7 kg
Mass ratio per stage 4.12 4.05
Minimum altitude in final coast to target 59.52 km 60.06 km
Burnout speed (Vc = circular orbit speed) 1.724 Vc  1.707 VC
Minimum altitude in final coast to target 59.52 km 60.06 km
Burnout altitude 134.65 km 118.9 km
Burnout time 91.43 sec 98.88 sec
Launch flight path angle, io 64.05 0 64.570
Initial acceleration and total burn time, stage 1 11.86g, 19.16sec 12.71 g, 18.30sec
Coast time between stages 1 and 2 8.90 sec
Initial acceleration and total bum time, stage 2 12.49 g, 18.18 sec 25.31 g, 8.80 sec
Coast time between stages 2 and 3 8.85 sec
Initial acceleration and total bum time, stage 3 4.99 g, 45.54 sec 29.08 g, 7.71 sec
Coast time between stages 3 and 4 39.92 sec
Initial acceleration and total burn time, stage 4 26.58 g, 8.55 sec 35.39 g, 6.39 sec
Coast time to target 208.57 sec 201.12 sec

Note that the optimal payload for the case where coasting is allowed between booster stages
is somewhat greater than for the no-coast case. In both cases the time for the third stage is much
longer than the time for the other stages. For the no-coast case this results in a long burn time; for
the coasting case this results in a long post-burn coast time.

The accuracies in meeting the constraints on f(tc) and V(tc) in the above two cases were
approximately 0.0005 radians and I meter/sec, respectively. The differences in the minimum
altitude during the final coast to the target for the two cases, compared with the specified constraint
altitude of 60 km., can be observed directly. Additional inequality constraints were imposed on
many of he parameters using the transformation technique illustrated in Eq. (28). None of these
constraints turned out to be active in the example.
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On the AD 100 the execution time per 20-step stage integration, thrusting or coasting, is
approximately 0.6 milliseconds. To illustrate typical overall AD 100 computational times, consider
a 4 stage trajectory with 3 coasts. This requires 17 parameters to be optimized. To compute the
cost function and its 17 gradient components takes 18(7)(0.6) = 75.6 milliseconds. Additional
trajectories will be needed for each iteration to solve the line search problem, so that 90
milliseconds repesents a reasonable value for the average AD 100 time required per iteration. The
approximately 200 to 400 iterations needed for satisfactory convergence to an optimal solution then
require 18 to 36 seconds of AD 100 time. To these times we must add the time required for the
VAX to implement the optimization algorithm for each trial, which in general increases the average
overall time per optimization to several minutes.

7. Conclusions

In this paper we have considered techniques for determining the optimal trajectories of
earth-launched interceptor rockets which are accelerated to over twice orbital velocity. The
objective of the optimization is to maximize the payload with a given interceptor takeoff weight.
Terminal constraints have been enforced using penalty functions. The required gradients of the
cost functions have been computed numerically using finite differences. We have shown that use
of a special multiprocessor computer, the AD 100, in conjunction with a VAX host computer, can
reduce very substantially the time required for each trajectory optmization. Utilization of a 5th-
order single-pass predictor-corrector integration method with a Gear RK-4 star"p algorithm for the
trajectory integration also has contributed significantly to the reduction in time. Typical AD 100
computation times for each 5 to 7-stage trajectory range between 3 and 4 milliseconds. For an
overall optimization requiring many thousands of trajectory calculations this translates into a total
solution time of minutes, compared with hours when the VAX alone is used.

Some preliminary results have been presented for a 4-stage example. It is found that
allowing a coast period between booster stages improves the optimal payload significantly. Future
research efforts will include parametric studies of the effect of different prescribed flight times,
target range and altitude, payload mass, refined aerodynamic and propulsion models, and aero-
assisted midcourse maneuvers.
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Abstract. This paper considers the problem of minimum-fuel interception with time

constraint. The maneuver consists of using impulsive thrust to bring the interceptor

from its initial orbit into a callision course with a target which is moving on a well

defined trajectory. The intercept time is either prescribed, or is restricted to be less than

a upper limit.

The necessary conditions and the transversality conditions for optimality were dis-

cussed. The raotiied of solution amounted to first solving a set of equations to obtain

the primer vector for an initial one-impulse solution. Then based on the information

provided by the primer vector, rules were established to search for the optimal solution 0

if the initial one-impulse trajectory was not optimal. The mothed is general in the sense

that it allows for solving the problem of three-dimensional interception with arbitrary

motion for the target.

Several numerical examples were presented, including orbital interceptions and inter-

ception at hyperbolic speeds of a ballistic missile.

Key Words Orbital transfer, optimal interception, primer vector theory, hodograph the-

ory, Lambert's problem, interception of ballistic missile.
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1. Introduction

The two problems of interception and rendezvous with time constraint are two fun-

damental problems in space maneuvering. We shall consider the first problem in this

paper. In the following content, the notations with bold faces represent vectors, the no-

tations with plain faces stand for the magnitudes of the corresponding vectors and scalar

variables. The product of two vectors is understood as inner product.

The interceptor is initially in a motion defined by its position vector ro(t) assumed

* known. At a certain time to, called acquisition time, or sometimes initial time, the target

is at the position rT(to) with velocity VT(to) assumed known. Hence, if its subsequent

motion is uncontrolled and is only subject to a Newtonian gravitational attraction, it is

well determined by the two functions rT(t) and VT(t) which can be computed from the

given data. It is proposed to intercept the target at a final time t! > to so that the

characteristic velocity required for the transfer is minimum. The specific assumption on

to and t1 will be given later when we consider the different types of interception.

It should be noticed that, for the sake of generality, the function ro(t) can be com-

pletely arbitrary. It may represent an orbital Keplerian motion for the interceptor, or an

atmospheric ascent trajectory for a rocket or an airplane which carries the interceptor.

* Likewise, we can simply assume that the function rT(t) defining the motion of the target

is known. On the other hand, we shall assume that, in the time interval [t 1, t1 ] where ti,

to :_ t, < t!, is the instant of the first ignition of the control engine, the interceptor is

only subject to the inverse-square force field and a controlled action of a propulsive force

F.

2. Necessary Conditions for Optimality

We consider the general problem of transfer. A rocket, considered as a mass point

S 3
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with varying mas is governed by the equations

V =g+r, (1)

uf=r,

where g is the acceleration of the gravity, a function of the position, U is the characteristic

velocity spent since the initial time

U = rdt, (2)

with r = F/m being the thrust acceleration. For a high thrust propulsion system, U is

a measure of the fuel consumption.

Consider the Hamiltonian of the system

H = p,V + pv(r + g) + pur, (3)

where the adjoint variables p,, pv and pu satisfy the equations

7H

_ .H
lv V = -Pr', (4)

aH

To maximize H with respect to the control vector r, we first maximize the product

Pvr. Then r must be selected parallel to pv and hence

/" = pV + Pvg + (pv + pu)r, (5)

where pv is the length of pv.

The thrust acceleration is now linear, subject to

o < r < r,,. (6)
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Consider the switching function

0 =Pv + Pu. (7)

Then, if
x> 0, select r =r, . (Boost arc),

*< 0, select r=o (Coast arc),

=- 0, select r = variable (Sustained arc).

We have Lawden's optimal law for the thrust control (Refs. 1 and 2):

Whenever the engine is operating, the thrust direction is parallel to the vector Pv,

called the primer vector.

- If r > 0, we use r -, ,,while if i < 0, we use r = 0. The thrust i switched on

* and off at x = O.

The problem is solved if we know the time history of Pv and the switching function

x. For example, if we plot the function ic versus the time, we have the typical variation

as in Fig. 1. We use the maximum thrust directed along pv between t1 and t2 and then

between ts and t 4. The remaining arcs are coast arcs. Of course, the terminal conditions

must be satisfied. For very high thrust, we can use the approximation r". --* co. The

time interval At for each boost arc tends to zero and we shall have the typical variation

* of r. in Fig. 2. The thrusting phases are approximated by the impulses I, and 12. For

impulsive thrust, by changing the independent variable from t to U, it can be shown that,

across an impulse, the functions r(t), g(r), p, and Pv are continuous (Ref. 2). On the

other hand, we write
dV = + pv Pv

Hence, integrating across an impulse, we have the discontinuity in V

AV = V 2 - V1 = (PV)Av,
PV

where AV is the characteristic velocity change across an impulse.

0 5
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The adjoint pu satisfies the equation

oH. a.P= - a-- a ',]

Yu a

On a coast arc, r* = 0, and on a sustained arc, ic = 0 and we have pu =constant. But on

a boost arc, with r* = rMG2(U),we consider the equation for the variation of the mass

dm F.,.- mr,". 0
t = C C

where c is the constant exhaust velocity for a high thrust propulsion system. By inte-

grating the equation, we obtain

U0
m = moexp(-- ).

C

Hence

r..(U) = F. = Fco. U

The adjoint equa . on for Pu becomes

Since K > 0 on boost arc, pu is decreasing along a boost arc. For the case of infinite

thrust, since across an impulse, U has a finite variation, we write

dpu X
dU c

Across an impulse, re = 0, and hence we also have pu =constant. We conclude that, in

the impulsive case, in the closed interval [to, tfi, pu =constant and from the transversality

condition in the next section

Pu = Pu = -1. 0

It is then sufficient to consider pv on coast arcs for impulsive thrust since we have

= Pv + pu _ 0, therefore pv :_ 1 on the interval [to, tI.

The solution for Pv on a coasting arc has been obtained by Lawden for a Newtonian

central force field in Ref. 1 and by Vinh for a general, time invariant force field in Ref.

3.
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Along a coasting arc, we consider a rotating coordinate system MSTW with .M at

* the rocket, the S-axis along the position vector, positive outward, the T-axis in the

plane of the motion, orthogonal to the S-axis and positive in the direction of motion

and the W-axis completing a right-handed system as shown in Fig. 3. Notice that 9 is

the true anomaly measured from the perigee of the osculating orbit.
Let S, T and W be the components of the primer vector Pv. We have (itef. 1)

S = Acos9 + Besin9 + CI1 ,

T = -Asine + B(I + ecosG) + (D - AsinG) + C2,
1 + ecosO (8)

_ EcosG + Fsin9

1 + ecoso

where

I,= ( 2 ) 1- cos9+ 2e 3VItesinI]• 0- (1 - e', I +I ecosO ~ in]

r cos + p ()
'2= epsinU + r' I "

Here JA is the gravitational constant and e is the eccentricity of the ballistic conic with

* semi-major axis a and semi-latus rectum p

p = a(1 - e2) elliptic,

p = a(e 2 - 1) hyperbolic. (10)

It is important to notice that in Eq. (9) t is the time since the passage of the perigee.

The coefficients A, B, C, D, E and F are constants of integration to be determined.

For the analysis, we also need the components of the adjoint vector p, -Iv. On

the rotating axes, we have the components of the derivative of pv

i' [Asin - D -B+C,
= 2 1 + ecos

T= 3/[-A(e +cos0) + De sin8 +Ccos ], (1)

VV V [F(e + cos9) - Esin 0],
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where
esin2 0 -co0 1, (12) •

Is esin0(1+ecoo0) 2  esin (2

We conclude this section with a clarification on the constant C. In a time-invariant

force field of attraction, the Hamiltonian is constant and we write equation (5)

H" = p,V + pvg + r'x = c 0

Since the equation is valid over the whole optimal trajectory, it suffices to evaluate the

constant on a coast arc with r' = 0. Lawden's solutions for Pv and p, = -P'v as given in

equations (8) and (11) apply separately for each coast arc, with 9 = 0 and t = 0 at the 0

perigee of the transfer orbit. When connecting several arcs by impulses, the constants of

integration A, B, ... , F and the time t have to be accordingly adjusted. In particular,

using the equations (8) and (11) for pv and p,, with the components on the MSTW

system

V = (JesinO, , 0),

g= 0, 0),
r2

by substituting above equations and (8) and (11) into Hamiltonian, we arrive at

P 2

where =H* is the global constant, and C is the constant on each coasting arc with

eccentricity e and semi-latus rectum p. For this reason whenever H" = 0 we simply take

C =0.

Across an impulse the term r'r has the indeterminate form oo x 0. But this term

is zero before and after an interior impulse since we have then either a coasting arc or a 0

sustained arc. Hence, since p, and pv are continuous across an impulse

H - = prV- + pvg = pV + + pvg = H *+ .

Because r" is parallel to pv, so is AV, hence

V + = V- + (PV) AV.

P

8



9

From the two equations above we obtain

PrPv = 0.

Hence p P v = PvPv = -PvP, = 0. It follows that P. = k = 0 for an interior impulse as

shown in Fig. 2. As pointed out by Lawden, this is not necessarily true at the end points

to and t! if an impulse occurs there. This leads to the fact that ri° = 0 for an interior

impulse and H ° = pV + pvg in the entire open interval (to, t).

3. Mransversaflty Conditions

In general, the acquisition time and states, the final time and states, may be con-

strained to satisfy a certain relation of the vector form

0 f(r, Vo, to, r!, V!, tf) = 0. (13)

For instance, in the interception problem one of the equations in (13) will be

r! = rT(t,). (14)

Equation (13) leads to a number of transversality conditions which must be satisfied by

the states and the adjoint variables at the end points.

In the following application of the maximum principle, we adopt the Pontryagin-

Contensou convention of maximizing the Hamiltonian for a minimum of the characteristic

velocity. Hence the performance index to minimize is J = U!, which is equivalent to the

maximization of the final mass for impulsive propulsion system. Let I be the augmented

* function

I = J + (Pr + pv "+ pufJ- H)dt, (15)

where H is defined by (3). Then besides the necessary conditions in Section 2, for a

stationary value of I, we must have the variation

bI = bJ + ,p,br + pv6V + pu6U - Hbt)fo = 0, (16)

0 9
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with all the variations satisfying 60f = 0. This is called tranoversality condition. The

constraint imposed at the end points in the form (13) renders the problem more difficult, 0

more challenging to solve. We shall examine some realistic and practical situations.

First, since U1 is arbitrary, 6U! in (16) is arbitray and independent. We have puf =

-1 for 6J + pu6Uf = (1 + puf)6Uf = 0. The transversality condition is reduced to
0

61= (pbr6 - pvbV - H6t)0 = 0. (17)

Following Ref. 2, with some modification, we explicit (17) in the following cases of

interest. 0

Since for an interception problem, the final velocity Vt is arbitrary, we have the

condition Pvt = 0. The last arc is a coasting arc, hence r(t,) - 0. Consequently

Hf= Pt!V. (18) 0

If the initial time to, ro and Vo are fixed, (17) becomes

pr!6 r - H;b6t = 0.

The condition is trivial if t! is fixed. If t t is not prescribed, constraint (14) requires that

br! = VTI6t! and we have the orthogonality condition

PrI(VT, - V!) = 0. (19) 0

It should be noted that from (18) and (19) the Hamiltonian is not necessarily equal to

zero because of (14) even if t/ is free in this case.

Another practical constraint is that to _ t! < T for some T > to with to, ro and V0  0

specified. If an optimal t, < T can be found, (19) remains valid. Otherwise t; = T, the

transversality condition is modified as (Ref. 4.)

pr,(VT, - V) = a, (20) •

with a being a multiplier.
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In the cae when to is free and no impulse occurs at to, 6ro = Vo t0 , 6V 0 = gobto,

the transveruality condition is simply

Ho = p,.oV o + pvogo.

Suppose an optimal t; is found and the first impulse on the optimal trajectory occurs at
t, > to. The impulse is an interior one and therefore p,(t1 )pv(t1 ) = 0. Apparently any

t < t1 , in particular, t1, can also be taken as optimal initial time because [to, t1) is a coast

period. On the other hand, if to = ti, any t < t, can also be optimal initial time provided

* that the optimal control for the interval [t, t1) is taken as zero. In conclusion, when to is

free, we can always take to as the point where the first impulse occurs and accordingly

pr(t;)pv(t*) = 0. Note that in choosing to do so the relation p,(t*)pv(t*) = 0 replaces

H* = proVo + pvogo.

Finally we consider the situation where rI is fixed but not the final time t1 . This

amounts to considering the target as fixed. In this case we have trivially H; = 0, that is

C =-0.

4. Method of Solution

From the discussion in the preceeding sections we see that the primer vector pv

plays an essential role in finding the optimal solution. In this section we shall present

an analytic method to obtain the primer vector on a one-impulse trajectory. Based on

the information provided by the primer vector, we shall show that if this one-impulse

trajectory is not optimal how it can be improved to approach the optimal solution.

• We consider the general three dimensional case. Let to be the initial time. We

initiate the interception by application of an initial impulse at to. The initial position is

r0 = ro(to) and the initial velocity is Vo = io(to). At the final time t1 , let r! = rT(tf)

be the final position. Notice that for any given to and t1 , we can evaluate r0 and rf, and

* consequently the transfer angle A as well as the initial velocity Vo before the application

of the impulse. Figure 4. displays the maneuver by one impulse changing V- into V+ . All

• 11
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the elements are now evaluated along the transfer orbit, which in well defined after solving

the associated Lambert's problem. In this respect the numerical scheme developed by •

Battin in Ref. 5. proves very efficient. Since V- and V+ are known, we can compute the

required impulse AV0 and hence pv(to) -AVo/AV 0.

Explicitly, if the initial motion of the interceptor is Keplerian, let eo and Po be the

eccentricity and semi-latus rectum of this orbit and fo the true anomaly defining the

position ro as measured on this orbit. After the impulse we have the corresponding

elements e, p and 0 of the transfer orbit obtained by solving the Lambert's problem. Let

i be the angle between the initial orbital plane and the plane of the transfer orbit. Then, •

if u, v and w are the components of the impulse AVo in the MSTW system attached to

the transfer orbit, we have
u eo

= -rocosi), (21)

W = rA~osin i.
ro 40

The characteristic velocity for the transfer is

AV 0 = Vus2 + v2 + W2 . (22)

Since Pv is a unit vector in the direction of AV, its components S, T and W are its

dairection cosines and we have explicitly

U T= W= W (23)

By writing Eq. (8) with t = r0 and 9 = 00, where ro is the time corresponding to Oo on the

transfer orbit (r = 0 where 0 = 0), we have three linear equations for the six constants

A, B, ... , F. For the interception problem the final velocity is free hence pv(tf) = 0

as pointed out in Section 3. Then by writing Eq. (8) with t = r! = ro + (t - to),

0 = Of = o+ A and putting S1 = T/= W! = 0, we have three more linear equations for

12
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evaluating the unknown constants. In particular, from the last equation in Eq. (8) we

obtain E pW sin9O

rosin A

F = -pW coeD0 
(24)

ro sin A

* For the rest of the unknown constants, C is obtained from

NG= (25)

where

N=(-)T + S(sin o- 2ta

G = [1 + e2 + 2ecos 0o - 2esinSotan A/2] [I,(ro) sinGO - I,(1f)sin ol (26)e sin 0o sin Of
• sin A

+ •sin 0o sin Of

A, B and D then are solved from the following

AsinA S Ssin0O - C[II(ro) sin Of - II(rf) sin fo], (27)

Be sin A = -S cos 9f + C[I (ro) cos Of - h (r1 ) cos 6o1, (28)

De sin A = -( [2e + (1 + e2) COO Of] [Io si Of - I,(,r) sin + coof sin A)* sin Of sin O (29)

+ S[2e + (1 + e2) cos Of].

With the constants evaluated, we can use Eq. (8) to calculate the magnitude of the

* primer vector along the transfer orbit

pv(t) = VS/S + T+ W 2 . (30)

In the computation, the time t can be computed from Kepler's equation

S-- E - esinE, (31)
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where at a little risk of confusion with constant given by (24), here E denotes the eccentric

anomaly such that 0

tan(32 )tan-.
=2y I1- C 2

Once the magnitude of the primer vector is computed by above procedure, three

types of typical behaviors of pv(t) are plotted in Fig. 5. They are representative, if 0

not exhaustive. In the ..ase (a), all necessary conditions are satisfied, the one-impulse

solution is thus a candidate of optimal solution. Although in the following sections we

shall see that this is the case for many realistic geometrical configurations of interception

and reasonable interception time At = t 1 - to, it is not conclusive so we can not exclude

cases (b) and (c). In both of these cases the proposed one-impulse interception is not

optimal. However, the following arguments show that for case (b) a coasting arc prior to

the application of the impulse will reduce the cost and hence the optimal solution consists

of an initial coasting arc. More than one impulse are needed for optimal solution fox case

(c).

First, from calculus of variations, the first order variational 61 of the augmented

function (15) is obtained from two neighboring trajectories which satisfy equations of

motion (1) and end conditions. But by (15) it is straightforward that if the equations

of motion is obeyed the integral in (15) yields zero, thus any variation in I is variation

in J, namely 61 = 6J. By expression (17), only considering the change in cost due to 0

initial variations because they are independent of the final variations in an interception

problem, we have the variation in J

6J = 61 = -pvo6Vo - po6ro + H0+6to. (33) 0

where "+" sign indicates the right limits of involved functions. Since H + = poV+ +

pvoVo, ' 06to = 6Vo and 6ro = Vo6to, where *+ = V is assumed, which is generally

true if ro(t) is Keplerian motion, Eq. (33) leads to 0

6J = p,.o(V + - Vo)6to = poAVo6to = AVoP,oPvo6to. (34)
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For 6to > 0 we see that 6J < 0 if -p,oPvo = pvo;)o = pio > 0. In other words, if the p,

exceeds unity immediately after to as in case (b) an initial coast will reduce the cost.

As for case (c), suppose that T is the trajectory defined by r*(t) with an initial

impulse at to; T' is a neighboring trajectory, defined by r(t), which passes through re(to)

at to and r'(t,) at t/ with one initial impulse at to and a mid-course impulse at some

tm E (to, t,). According to Ref. 6. such a trajectory can always be constructed provided

a nonsingulauity condition is satisfied. Along 7"

r(t.) = r:. + 6r.,

• -(t.) = k:, + 6v;,

f+(t.,) = f; + 6V+,

AV, (t)r(t) = 6v+ - 6V;.

Also
i+ (to) - (to) = [P'(to) + 6Vo- f'-(to)

= AVo + 6Vo,

where 6 stands for the small variations from T.

Cost on T

J = AV.

Cost on T'

' = lAVo + 6Vol + 16V+ - ,V;l.

* To the first order, the difference is

6 J ~ J'- a - V o + I fn in~l

AVo

Since pv(to) = AVo/AVo,

6J = pv(to)6Vo + I6V+ - 6V-I. (35)

15
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By a property of adjoint variables it is known that along T

p,6r + pv6V = constant.

In particular
p,(to)6ro + pv(to)5Vo =- p,(tm)6r. + pv(t..)6V,

pr(tf)6rf + pv(tf)6Vf = pr(tm)6rm + pv(tm)6V. (36)

Noticing that pv(tf) = 0 and 6r0 = 6r/ = 0, we add a vanishing term -pv(t)6V 1 to

(35) and with the aid of (36)

bJ = pv(to)6Vo - pv.(t/)bV, + i6V + - 6V- I

= -pv(tM)(6V + - 6V;) + 16V + - 6V-J

- -pv(t,')AVm + &Vf,.

Let d be the unit vector in the direction of AV,.,

6J = AV,(1 - pv(t,.)d). (37)

Therefore if there exists a t,. E (to,t!) such that pv(t.) > 1, a mid-course impulse can 0

always be selected so that J < 0, the greatest descent is when pv(tm) is maximum and

d is in the direction of pv(tm).

Note that in Ref. 6. a proof has been given to a two-impulse trajectory which states

that if pv > 1 between two impulses a mid-course impulse can reduce the cost, while some

modification is adopted in the above treatment for our specific objective of interception.

Combining the two results, we have the rule tc search for an optimal multi-impulse

trajectory, if necessary, by starting with a simple one- mpulse solution. 0

5. Interception at Elliptic Speeds

The necessary conditions in Section 2, and the computation of the primer vector

in Section 4 are perfectly general, that is, it is applicable to a minimum-fuel three- •

dimensional interception problem, for any given pair of arbitrary functions ro(t) and
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rT(t) describing the initial motion of the interceptor and the motion of the target. If

ro(t) is non-Keplerian, it is sufficient to replace in Eq. (21) V/-0eo sin fo and ,vu/r0

by the components on the S and T axes in the initial plane of the current velocity Vo .

The explicit transversality conditions derived in Section 3, while they allow arbitrary

motion of the target, specify that the initial motion of the interceptor is Keplerian. With

0 slight modification, we can derive similar conditions for arbitrary ro(t).

To reduce the number of parameters involved in the examples in this section, we

consider the initial orbit of the interceptor as circular and take ro = 1 as the unit distance.

By taking the gravitational constant gs = 1, the characteristic velocity is normalized

with respect to the circular speed at the distance ro. Then 2,X is the dimensionless

orbital period of the interceptor in its initial orbit. Although the dimensionless time and

distance are used, to have a physical understanding of the results obtained, from time to

* time we shall choose some Earth's orbits of particular altitudes in kilometers as reference

to interpret.

Problem 1.

The target is in an inner coplanar circular orbit at distance rf. The initial time is

preset, without loss of generality, equal to 0. This is the same as specifying the angular

distance w at the time to (Fig. 6.). The final time t! is subject to constraint

tf _< P, (38)

where P is the period of the target orbit. Alternatively, it is required to intercept the

target before it completes another revolution. By the explicit transversality conditions

in Section 3, if an optimal t* < P can be found, Eq. (19) should be met, i.e.

p,f(VTf - Vf) = 0. (39)

* Otherwise, if t; = P, Eq. (20) holds. It should be noted that if (38) is not present,

the problem may have an optimal solution with t; > P. As we shall see, after (38) is

17
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reinforced the constrained optimal solution does not necessarily take t; = P, depending

on the initiW lead angle w. Of course the unconstrained optimal cost is generally better 0

than the constrained optimal cost.

To solve this problem, we apply the technique disscused in Section 4. An initial

impulse is to be applied at to. We take the transfer angle A between r0 and a trial r! as

parameter. For any given A we can compute the time of flight from

t = r,(W +A). (40)

After solving the associated Lambert's problem, the direction and the magnitude of the

corresponding initial impulse are known. We can evaluate the constants in (8) the

method presented in Section 4 and then compute Pv and p, by (8) and (11). To a

solution with t; < P, (39) is used for iteration to determine the correct A, and hence t!

from (40). Although all transversality conditions pv(tf) = 0 and (39) are satisfied, for

the solution to be optimal pv(t) must be of case (a) in Fig. 5. Figures 7(a) and 7(b) show

the variations of pv(t) for w = 200 and 34.78, and pv(t) for w = 50" (in solid line) is in

Fig. 7(c), with ro/r! = 1.25. For the first two w's the one-impulse solution is optimal and

the optimal launch time coincides with to = 0. Notice that i4 (0) = 0 for w = 34.78 ° . The

corresponding A angles are 225.760 and 1800. The dimensionless final times are 3.071 and

2.684, the dimensionless characteristic velocities are 0.07139 and 0.05719, which for an

initial interceptor orbit with an altitude of 2,000 km, they translate into 62.14 minutes,

54.31 minutes, 0.493 km/sec and 0.394 km/sec respectively, while the period of the inner 0

orbit is P = 90.97 minutes. But in the case w = 500 the solution is not optimal. By the

analysis in Section 4 we know that the behavior of pv(t) plotted in solid line in Fig. 7(c)

suggests a coasting arc prior to the application of the impulse. To have more insight, we

look at the case where w = 34.780. This lead angle is special in the sense that a tangential 0

retrograde impulse is optimal and the transfer angle A is exactly 7r, i. e. , a Hohmann

18
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type transfer. This special lead angle is given by

O w= r + L°)- (41)

When the initial w is greater than w", the optimal strategy for the interceptor is to coast

on the initial orbit until wo is formed due to relative motion then launch. The coast time

0 is computed from

tj = (W -WO) (42)

where f) is the relative angular speed

After such a coast arc is added, the variation of pv(t) for w = 50" is shown in Fig.

7(c) in dashed line. The optimal characteristic velocity is the same as in the case when

* w = = 34.78, the final time is 67.83 minutes and the coast time is tj = 13.52 minutes.

Taking into account the constraint (38) and the fact that the Hohmann type trinser

requires A = x, we can easily have the range of initial lead angle w within which the

Hohmann type optimal interception is possible

w* <w<_ r[ (+ ) +11 '  (43)

where n is the ratio
r0 (44)
r/

Whenever w is within range given by (43), the optimal characteristic velocity is the same

AV=C _I2Or (45)

When 0 < w < *, we found that the initial one-impulse solution is always optimal, and

always t/ < P. When w exceeds the upper bound in (43) and is less than about 1278,

we found that an initial coast is still needed, but of course is not given by (42) and the

* impulse is no longer tangential. Morever, t; = P, thus condition (20) applies instead of

(19). When w is larger than about 127, no initial coast is optimal and t; = P.

19
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The dimensionless optimal characteristic velocity for different w ranging from 0" to

180" is plotted in Fig. 8. It is seen that AV depends on the lead angle w and can be

prohibitive for large w. This dependence is due to constraint (38). If t! is free, the

interceptor can always stay on the initial orbit and launch when w" is formed no matter

what initial configuration at to is. The Hohmann type interception is then performed

and the characteristic velocity is always the same, only depending on n. The launch time

0 < t1 is explicitly

t1 ( Wo- W)/fl; if wo >w', (46)
= 2,,r + (o-,'))/; if Wo < wO.

where wo is the initial lead angle, and w* is defined in (41). It is a simple exercise to show

that the Hohmann transfer satisfies the conditions

p,(tl)pv(ti) = 0, (47)

p,(t1 )(VT! - V) = 0. (48)

For Hohmann transfer V1 is parallel to VT!. Then (48) is equivalent to H; = pV! = 0,

hence C = 0. If furthermore

A =0,

1-e
4e (49)

D (1+e)2 (1 - e)
4e

where
n-Ie = 1 ' -•

then since o = 180" and 0/ = 0° on the transfer orbit, we see that pv(tf) = 0 and (47)

holds. In addition, S(tj) = 0 and T(t1 ) = -1, which is the characteristic of Hohmann

transfer. But since C = 0, from (26) N = 0 hence

2S tan = --ET P
2 ro ro

20
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From (27)
A P sin OfA=~. iD

*r. 4 sin2 A/2'

B= p coe o,

ro 4e sin 2 A/2'

D- p [2e + (1 + e2) coD 1 ]
9 ro 4esin2 A/2

Let A = 180", O = 0 and p/to = 1 - e, we have (49).

Problem 2.

When either or both orbits of the interceptor and the target are elliptic, the basic

technique and analysis remain applicable though there may be no explicit relations like

in the case of two circular orbits. If the intercept time is constrained by (38) the optimal

0 solution is also expected to show dependence on the initial configuration.

Let us consider the case where the interceptor is still in a circular orbit defined by

ro = 1, but the target is on an inner coplanar elliptic orbit with eccentricity eT and semi-

latus rectum pr (Fig. 9). It should be noticed that although the orbits are well defined

geometrically by the quantities ro, eT and pT, the motion with respect to the time on

these orbits can be arbitrary. We assume these motions are known. That is, at to, let v7

be the lead angle of the interceptor with respect to the perigee of the target orbit, w be

0 the lag angle of the target with respect to the perigee. Both q; and w are known. For a

given r, different w represents different initial configuration.

As for numerical example, we consider a target orbit such that er = 0.2, Plr = 0.6

0 and select the time to such that t7 = 30*. The angle w is taken as a varying parameter.

The method of solution is similar as described in Problem 1, with the flight time t1 - to

for a transfer angle A evaluated by Kepler's equation along the target orbit, instead of

(40).

0 The verification of function pv (t) against the discussion in Section 4 reveals that for

a given q7 there exists an w,, in our case w, = 101.008", such that when w < w, the initial
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one-impulse solution is optimal. A coasting arc is needed for optimality when w > .

Furthermore, in our case for 148.40 !w w < 176.60, t; = P = 3.1046 with a coasting prior

to the impulse. For w > 176.6', t; = P without coasting. Figure 10 gives the variation

of optimal AV vs w for 00 <w < 1600. It should be noted that in the present situation

the optimal characteristic velocity shows stronger dependence on w as in Fig. 10, unlike

in Problem I where w in a certain range yields the same AV. There exists a overall

optimal AV corresponding to w* < w,, in our case w* = 98.437*. The special aspect of

the optimal solution for w* is that the optimal transfer trajectory tangentially intersects

the target orbit at the intercept point. We shall show that this particular trajectory

is also the minimum fuel transfer trajectory from the position ro(to) to the target orbit

without considering interception.

Because of the tangency of two orbits, VT! is parallel to V1 . Transversality condition

(19) is equivalent to H; = p,fV! = 0. Hence C = 0 and N = 0. From (26) we have

PT + S(esin Oo - 2tan A) = 0, (50)

where S and T are the components of pv(t0 ) which are proportional to 0

(1±+ eCos8)'[1 - 1 = esin0o(2tan - esin o). (51)
1 T a-1+cos 2"

In deriving (51) we have used the polar equation 0

P= 1+ e os0

to eliminate p. Next, by writing the condition for collinearity of the two vectors

V1 = ( Vqpesin, r-),

VT =( ;_ ieT sin (17+A),

we have 0

+(1 ecos 00)eTsin(n + A) = esin(9o + A). (52)
PT
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Finally we express the equality of radii on the two orbits at t1 as

(.)(I + ecos00)[1 + eTcos(, + A)] + 1+ecos(00 + )(53)
PT

The three equations (51), (52) and (53) can be solved for the unknowns e, O0 and A-.

The angle w* can then be deduced from the Kepler's equation.

The problem of finding a minimum fuel transfer orbit from a given position with

one impulse to a given orbit is in the area of parametric optimization. We consider

the problem of minimum fuel transfer from the position ro(to) to the target orbit by

0 following the hodograph theory presented in Ref. 7. We look at the condition required

for the velocity V(t 0 ) after the impulse for leading the transfer trajectory to a point on

the target orbit at the down range angle & with radius rf. Let z and y be the components

of the normalized velocity V(to)/ 1 /ro on the MST system. On the transfer orbit with

eccentricity e, semi-latus rectum p and true anomaly 0, we have
1Le esin 0

p sno =1+ cos 0 '

+ e cos 0.(54)

At the final point

p[1 + e os(0o + A)]. (55)0/ r-" =

Let

ro- (56)
rf

* From (54)-(56), we have the equation for z and y in the MST system

(n - cos A)y 2 + sin Axy - (1 - cosA) = 0. (57)

Equation (57) shows that the tip of the velocity V(t 0 ) must be on a hyperbola with

asymptotes MS and MM 1 (Fig. 11). Since the initial normalized velocity has the

components (0, 1), the minimum AV corresponds to the shortest distance from this point
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to the hyperbola (57) for prescribed rf and A. When r! varies as a function of A (Fig.

9), we have a family of hyperbolas defined by

f(zy,A) = [2.(1+eTcoO(,+ A)) -cooA] 2 +sinAzy- (1 -cooA) =0. (58)
PT

This family of hyperbolas has an envelope which is obtained by eliminating A between

(58) and equation a1//A = 0

t0
[sinA - -eTsin(q + A)JY2 + coS &ZY- Sin = 0. (59)

PT

After elimination of A between (58) and (59), we arrive at

Cy + z 2 + 2#xzy+ -y = 0, (60)

where
a =1+ (O)2 (e2 - 1) - 2 -eT coO 17,

PT TPT
r0
PT= - eT sint, (61)

-y =2[ -- (I + CT COS 17) - J0
PT

Since 32 - a > 0, the curve (60) is also a hyperbola. The terminus of the optimal velocity

V(to) must be on this envelope. The shortest distance from the point (0, 1) to (60) is

obtained by solving (60) and the equation for orthogonality

z y-1 (62)
z + /fl- ay + Oz

If we use an auxiliary variable z

X e sin 0
Z = - = (63)

U1 +ecoseo'

by combining (60), (62) and (63), we obtain a quartic equation in z

Aoz 4 + Alz 3 + A2z2 + A3Z + A4 = 0, (64)
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where
Ao = 1 + "yfl,

A, = 40 - 20oy(I - a),

A2 = a + 502 + -y[(1 - a)2 - 203], (65)

A3 = 2aft + 23 + 2#y(I - a),

A 4 = O2(a +Y)

Upon solving (64), the components of the optimal V(to) are

(z+3)z
- z 2 +(a-1)z-1' (66)

(z + 0) (67)

From (59) and with the aid of (60), (61) and (63) the optimal transfer angle is

tan + - (68)
2 2(z +1

To compare the above results with the results from optimal interception, we first

notice that using definition (54) to expand (53) leads to (58). Likewise (52) directly

yields (59), consequently (60). Finally, using (51) and (52) to eliminate A, after some

algebraic manipulation, the quartic equation (64) is recovered.

We conclude this section by providing some explicit equations for computing the

critical values w, where an initial coasting arc starts to appear. This happens when at

the time of the impulse S§ + T' = 0. Using this relation and noticing that in this case,

HO' = H; = -ACe/p 2 , we have a condition

Ce .
pA- + LS. (69)

Upon expliciting this equation and simplifying, we have the relation

2( P)3/2sinA + (.L)3K - QsinA = 0, (70)
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where

K Ii (ro) sin Of - I,(r,) sine0d

_ 1 -- 22p ) sin 00 sinO
S ) [- sin A + 2e(!)siO- 2e(p)sin Oo + 3C3 sn 0 si

(71)

A
Q = 1 + e2 + 2ecos 0o - 2esin 00 tan -.2

In deriving these equations, we have used the simplification of an initial circular orbit.

On the other hand if we write the transversality condition (39) we obtain explicitly

P )2[(P)s/2K + sin Afe/sin9O - \I-CTin(q + A)]
7, ro FP P;

sine 
(72)

rQ P eT si~ti +A)]sin A.

This equation is the general, time free transversality condition for interception from initial

circular orbit. In the case of w = w,, Eq. (70) can be used to eliminate K, and we have

the simple relation

(sin/- -eTsin(l+A)]= (-)3/-[esin of- A -eTsin(i +A)]. (73)

Now, if we use Eqs. (70) and (73) with Of = 0 + A, and the time of flight At computed

from Kepler's equation along the transfer orbit, and Eq. (53), we have three equations for

three unknowns e, do and A. The value w, then is computed from Kepler's equation along

the target orbit. When w w, > w., the value q = rh which determines the required

coasting arc becomes an additional unknown, but we can always solve the inverse problem

by fixing o7l for solving the three equations and then compute the corresponding critical

w for adjustment of rh

As special cases, we first notice that, for tangential interception, Eq. (52) applies

and (72) is reduced to Q = (p/ro)3 /2 which is precisely Eq. (51). For both tangential

interception and w = w,, Eq. (73) leads to sin Of = 0. To satisfy all necessary conditions,

we must have sin 00 = 0, sin ql = 0. The transfer is of Hohmanr type.
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Finally, we notice that, if the target orbit is circular, eT = 0 and the lead angle is

irrelevant. Ruling out the very rare case of non-Hohmann type transfer where e sin 9f= 0,

we obtain from Eq. (72)

(L )/2[(P)3/2K + sin A] = [Q -_)/2 1 sin A. (74)

Equation (74) is the general transversality used in Problem 1 when t; < P.

6. Interception at Hyperbolic Speed

In this section we consider a case of realistic importance when rT(t) represents the

motion of a ballistic missile. The time t1 is then finite and is usually the time before

the missile reaches its maximum altitude. The initial to can not be arbitrary, usually

some time after the detection of the motion of a hostile missile. Thus both to and t1 are

specified and the intercept time At = tf - to will be considerably short.

The geometry of interception is shown in Fig. 12. The interceptor is in its initial

circular orbit with radius r0 = 1. No extra difficulty will be present if an elliptic orbit is

assumed except for more parameters involved. At t1 the target is at the position defined

by the polar coordinates rf, 6 and V with 6 being the longitude and P the latitude

as measured from the position of the interceptor at t0 . The initial orbital plane of the

interceptor is taken as the reference plane. The inclination angle between the reference

plane and the interceptor-target plane at to is

tani = tan (75)• sin6'

and the angular distance between the interceptor and the target is

cos A = cos P cos 6. (76)

* Again the technique presented in Section 4 is applied here. Because all end conditions are

given, no transversality condition is involved. When At is relatively short, the transfer
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trajectory is generally hyperbolic. The application of the technique of Section 4 shows

that in the hyperbolic region and elliptic region where At is not excessively long, the

variation of pv(t) generated by an impulse applied at to always falls into case (a) of Fig.

5, so the initial one-impulse trajectory is optimal provided that the one-impulse transfer

trajectory will not intersect the surface of the Earth, which is true for most of practical 0

intercept situations. Only when At is quite large we have pv(t) belonging to case (b) of

Fig. 5 where an initial coasting phase is required.

Figure 13 shows the variation of AV as function of At for a specified down range

longitude 6 = 450 using the latitude W as parameter with 20 ° increment for an interception 0

of altitude r = 0.95. To have some physical feeling, an initial orbit of altitude 600 km is

chosen, r corresponds tQ an altitude of 251.23 km. The intercept times range from 2 to

15 minutes. 0

We repeat the experiment with a value r = 1.05 which corresponds to an altitude of

948.77 km for the same initial orbit. The results are illustrated in Fig. 14.

In each figure, we have plotted a dashed line separating the elliptic and hyperbolic

interceptions. This is obtained by solving the equation for parabolic transfer

6VIA4At = (,0 + r, + c)31 , - (,o + 7! - c)/', (77)

where c is the chord length

C2 =, + rf - 2ror cos 6 cos p. (78)

For each transfer time At and down range longitude 6, it is obvious that as we increase

the latitude V, the transfer angle A increases, and the fuel consumption increases.

We notice that for any given 6 and p, or in general for any prescribed transfer angle

A, there exists an optimal transfer time At for overall minimum characteristic velocity.

This particular transfer can be obtained as follows.

In the present formulation of the problem, allowing At to vary is the same as fixing

r0 and r/ and letting t/ free. By the final remark in Section 3 this leads to H; = 0, hence
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C = 0. By (5o)
AT v

* (2)(2tan esuo) = § = -*. (79)
p 2 SU

It has been shown in Section 5 that, for a velocity V to be such that the trajectory

passes through the prescribed final point with radius rf and down range A, its normalized

components z and y must satisfy the constraining relation (57). In general, let t and 9

be the components, along the S and the T axis, of the velocity Vo .4 -/V70 before the

application of the impulse. We have

- eo sin fo,* V Po

Cos 
(80)

Notice that and 9 are known quantities. Rewrite (79) by using definitions (21), (54)

and (80)

X -2 (2tan 2 -A y). (81)

The two equations (57) and (81) can be solved for z and y. Explicitly, we solve for z

0 from (57)
= (1 -cos A) - (n- coo A)y3 (82)

y sin A

Upon substituting into (81), we have a quartic equation for y

Aoy7 + Aly + A2y2 + Asy + A4 = 0, (83)

where Ao = 1 + n 2 - 2ncosA,

A, = sin A[(n - cos A)t - psin A],

A2 = 0, (84)

A3 = 2(1 -cos A) sin A,

A 4 = -(1- cos A) 2 .
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After solving for z and y, we deduce the relevant elements of the transfer orbit from

P = y2 = 1 + e coe 0o,
ro

e sin 00 =zy,

tan 0o= ;'i 1 0O = Oo + A ,tn 0=y 2 -_ 1' (85)

e2 2 (zy)2 + (y2 - 1)2,

rO

a-2- (X2 + y2)"

The minimum overall characteristic velocity is computed from (21) and (22) where now

U = - 2

(86)

The optimal time of flight At is obtained from Kepler's equation

3/ At = (Ef - Eo) - e(sin E - sin E0 ), (87)

where (32) is used to evaluate the eccentric anomalies E0 and Ef.

The computation using these explicit equations indeed gives the points of minimum

AV in Figs. 13 and 14.

7. Conclusion 
•

In this paper, we have presented the complete solution of the problem of interception

with time constraint for an interceptor with high thrust propulsion system. The necessary

conditions and the transversality conditions for optimality were discussed. The method •

of solution amounted to first solving a set of equations to obtain the primer vector for

an initial one-impulse solution. Then based on the information provided by the primer

vector, rules were established to search for the optimal solution if the initial one-impulse

trajectory was not optimal. The approach is general in tn - .nse that it allows for solving

a problem of three dimensional interception with arbitrary motion for the target.
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Several numerical examples were presented, including orbital interceptions and bal-

* listic missile interception. Since impulsive thrust is assumed, whenever it is convenient,

the results from optimal control theory are verified by parametric optimization using

hodograph theory. In the important case of short time interception of a ballistic missile

it is found that the intercept trajectory is usually hyperbolic and for a minimum fuel

trajectory, a single impulse should be applied immediately at the acquisition time.

0
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OPTIMAL AEROASSISTED INTERCEPT TRAJECTORIES

AT HYPERBOLIC SPEEDS

Elmer G. Gilbert*, Robert M. Howe* ", Ping Lut, Nguyen X. Vinh*

0 The paper considers the optimization of earth-based multistage rocket

interceptors with very short flight times and long ranges. The objective is the

minimization of the launch mass as a function of interceptor design variables

such as: stage size, engine burn times and the angle-of-attack program.

Because of the demanding target conditions the '3yload reaches hyperbolic
0 speeds and the centrifugal force greatly exceeds the gravity force. The

minimization of launch mass shows that the needed down-force on the payload

is best provided by negative aerodynamic lift. The description of such

negative-lift, aeroassisted optimal trajectories is a principal goal of the paper.
* Topics treated include: a model for the multistage interceptor, the formulation

of the optimization problem, the mathematical derivation of a universal curve
which provides a simple and accurate model for negative-lift segments of the

optimal trajectories, effective procedures for efficient numerical optimization.

Results of solution studies are reported. For flight times of six minutes and a

range of about 3000 miles, a five-stage interceptor requires a mass ratio of

several thousand. The dependence of the optimal mass ratio on key design and

target parameters is described.
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Nomenclature

A dimensionless thrust in g's = T/(mogo)

CD, CL lift and drag coefficients

D dimensionless drag force = pv 2SCD(mogo)

g0  gravity acceleration at ro

h altitude = r- ro
hS scale height of exponential atmosphere = 7.16 km
H dimensionless altitude = h/ro

isp specific impulse
ISp dimensionless specific impulse = isp/(rog o )l/2

L dimensionless lift force = i pv2SCL/(mogO)

m vehicle la
MO reference mass 0
M dimensionless mass = n/mo
N number of stages
r distance of vehicle from center of earth
ro reference distance

R dimensionless distance = r/ro
S cross sectional reference area

t reali dme
T engine thrust

v vehicle speed
V dimensionless speed = v/(gro) 1/2
x dimensionless time for universal curve
a angle of attack 0
Y flight path angle with respect to local horizontal
11 dimensionless force coefficient = poroS/mo
6 polar angle of vehicle trajectory
X fineness ratio = stage length/stage base diameter

dimensionless inverse scale height = ro/hS

2
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p(r) atmospheric density

Po rfere density = p(ro)
9 P(H) msionless density = p(roH+ro)/Po

Oj mass-ratio parameter for ith stage

T dimensionless time = t(ro/go) 1/

0 I. Introduction

The utilization of satellite-based missiles for intercepting ICBM s during their ascent

constitutes one of the major efforts in the U.S. Strategic Defense Initiative. Here, an

alternative approach is considered: the use of high performance, multistage, earth-based
* interceptors. The very short flight times and long ranges require hyperbolic speeds and a

high ratio of take-off mass to payload mass. A natural objective is the minimizaton of the

mass ratio with respect to interceptor design variables such as: stage size, engine burn

times, coasting times between stages and the angle-of-attack program. Using techniques

described in this paper, numerical solutions of such minimization problems have been

obtained. In addition to giving information on how target parameters affect the optimum

launch mass, they show that negative aerodynamic lift plays a crucial role in the midcourse

portion of the optimal trajectories. The general physical basis for this key result is easy to

understand: the hyperbolic speed generates a centrifugal force far in excess of the gravity

* force, and the required down-force is generated more efficiently by negative aerodynamic

lift than by engine thrust. The primary objectives of this paper are threefold: (1) to

summarize the models and methods by which the optimal aeroassisted trajectories are

computed, (2) to clarify by analysis the detailed nature of the aeroassisted portion of the

optimal trajectories, and (3) to give some insight into how design and target parameters
affect the optimal launch mass.

The presentation begins in Section II with the details of the mathematical model for

the multistage interceptor. Physically reasonable simplifying assumptions are introduced to

keep the complexity of the model within acceptable bounds. The minimum launch mass

• problem is formulated in Section III. To emphasize the importance of the negative

aerodynamic lift, three examples of optimal trajectories are given. They correspond to

different assumptions on the trajectory of the payload stage: extra-atmospheric flight,

atmospheric flight with zero aerodynamic lift, negative-lift aeroassisted flight. With respect

to launch mass the aeroassisted flight offers a clear advantage.
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Over a wide range of target conditions it has been observed that the optimal

aexrassisted trajectories share a common feature. The atmospheric segments of the payload 0

trajectories follow closely a speed-altitude relationship which we call the universal curve.

The theory of this universal curve is developed in Section VI. It provides simple formulas

which describe accurately the aeroassisted motion of the payload.
Section V reviews techniques used in the computation of the optimal trajectories. The

minimum launch mass problem is a nonlinear, multistage, optimal control problem with 0
parameters and constraints. The effect of its inherent complexity on the computations is
eased by using a direct method in which the angle-of-attack program is approximated by a
finite-dimensional functional representation. The resulting finite-dimensional optimization

problem is solved efficiently by the application of an augmented-Lagrangian, quasi-Newton
algorithm. Important practical aspects of the overall procedure are discussed. For 0

example, it is shown how the angle-of-attack program can be parameterized indirectly
through a direct parameterization of the flight path angle. This step is crucial in obtaining a

numerically well-conditioned optimization problem.

Many optimal trajectories have been computed. Some of the results are summarized

in Section VI. They show the effect on launch mass of such parameters as the time of
flight, the intercept altitude, the number of stages and the specific impulse of the engineL

For 5 and 6 stage interceptors mass ratios on the order of several thousand are necessary.

Short flight times and low intercept altitudes increase appreciably the launch mass.

II. Model for the Multistage Interceptor

To obtain the equations of motion it is assumed that all stages of the interceptor are

modelled as a point mass moving in a plane which contains the center of a spherical, non-
rotating earth with an inverse-square gravitational field. Choosing state variables r, 9, v, y and •

m and writing the resulting equations in dimensionless form then gives:

__dO V cos ¥
dR = V siny , d@ V

dy I Asin a+L + - cos Y ,dT VL M (I

dV Acosa-D sin dM -A
dr M R2 d2 ' Isp

0
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These equations are well scaled when ro = earth radius and mo= nominal mass of vehicle.

* Now V = co sponds to the circular orbital speed at ro and r = 2n corresponds to the

period of a circular orbit at ro.
The dimensionless lift and drag forces are given in terms of H and V by

L=1 P(H)V2CL, D=I 11P(H)V 2 CD. (2)

For the results reported later in this paper an exponential variation of density with altitude has

been used. This approximation simplifies the computations and produces almost the same

optimal trajectories as more complex atmospheric models. For the exponential variation,

* P(H) = e- PH . (3)

Lift and drag coefficients are modelled by the formulas2:

CL = CN Cos a - CA sin a,

* CD = CN sin a + CA COS a,

CA = 0.13,

CL=sin 2a cos i a + 5 (r)-I X sin a Isin cn. (4)
2

* In addition to choosing an angle-of-attack program, a(@r), in (1), it is necessary to

specify the thrust program and describe parametrically the physical characteristics of the stages.

Our model of the thrust program is simple, and is consistent with the requirements of solid-fuel

engines. For the i th stage it consists of an initial coasting period, ;iC, where A = 0, and a

* single thrusting period, riB, where A = constant > 0. The fust stage has no coasting period
(TIC = 0) and there are N powered stages. The final payload stage is unpowered but may

generate a controlled aerodynamic lift Its coasting time from burnout of the Nth stage to targt
interception is denoted by ?N+IC.

The stage masses are modelled as follows. For the i th stage, let MiP, MiF and Mi S

5 denote, respectively, the masses of the payload, fuel and structure (together with the engine

and other jettisoned components). Then
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MiP = Mi+IP + Mi+l F + Mi+l $ , i = 0,..., N-i,

MoP = launch mass of entire vehicle,

MNP = mass of final payload. (5)

Let

ai+I Mi P- Mi+P, i = 0 ... , N- 1. (6)

Here, 0 < Gi < 1, is a stage mass-ratio parameter. Once o, ... , ON and MNP are specified, the

individual stage-payload masses MoP, ... , MN.1P are known. To avoid the need for additional

stage-size parameters, a final simplifying assumption is made:

MiS-- 0. 1MiF , i--1, ... , N. (7)

Then from (5) it follows that

MiF = (1.1)- (Mi. 1
p - MiP), i = 1, ... , N. (8)

While (7) neglects many details of the structural design, it is representative of attainable

structural efficiencies. Once the fuel masses are determined, the thrust levels Al can be

computed. They are proportional to MiF/iB.

The masses of the stages also affect, through their reference areas, the aerodynamic

forces. Let Si, di and .i be, respectively, the base area, base diameter and fineness ratio of the

i th stage including its payload. Assume that the mass density of each stage prior to the ignition

of stage burning is the same. Then, mi. IP = (const.)d 3 )i. Since Si is proportional to di2 this

gives

Si = CS (milP.i') 2/ 3,

= CS in0
2/ 3 (Mi. 1

p  i'1)2/3, i = 1, ... , N + 1. (9)

We have chosen CS to make (9) conform closely with the corresponding relation for the

Minuteman I vehicle. In our computations Xi = 10 for i = 1, ...., N. Since the final payload

is subject to aerodynamic forces during its coast to the target, its reference area, SN+1, and

fineness ratio, XN+1, are needed. This explains i = N+I in (9). In our computations we have

chosen XN+1 = 5.
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Il. The Optimization Problem

0 In this section we outline the general features of the optimal interception problem and

show by some examples the character of the optimal trajectories. The specified interception

data are: the flight time of the interceptor = tf, the target range angle = Of, the target altitude =

hf and the payload mass = mNP.The optimization objective is to minimize the total launch
mass moP. The free variables in the interception are: the angle-of-attack program, the coasting
and thrusting periods tC and tiB, and the mass-ratio parameters oj.

Once the free variables are given it is clear how the corresponding multistage trajectory is

generated. Let ro = earth's radius. Then the multistage nondimensional equations of motion
can be written. For the first stage: R(G) = 1, 9(0) = 0, Y(O) = 90", V(O) - 0, M(0) = Mop.
Since the free variables determine A(t) = AI (through M1F andT IB) and Mo p, the equations of

motion can be integrated for 0 < : t5l. At v = ,IB staging occurs and the equations of

motion use data appropriate to the second stage. Specifically, (1) is integrated for tiB :; C
TiB+ T2C + r2B with R, 0, yand V continuous across staging and with A(C) determined by A2,

v2C and ?2B in the obvious way. The initial mass of the second stage is M(,Cl!) = MIP.The
* remaining stages are handled in the same way until v = if -t 1B +,2C +'92B+ ... + TB +

? iC. Actually, this equation is used to determine TN+IC.

Of course, there are constraints on the free parameters:

G<0i< 1, O< fiB tiB, 0T.iC, i= 1,...,N. (10)

The lower bounds, fiB, provide a means for limiting the maximum thrust or acceleration of

each stage; they may, for instance, depend on other parameters such as MiF. In addition to

these direct parameter constraints, there are the implicit constraints corresponding to target
0 interception: O(?f) = Of, r(rf) = rf.

Operational considerations may add further constraints to the interception problem. We
have, for example, considered three distinct optimization problems. They differ only in the

assumptions placed on the motion of the unpowered final stage; the models for the powered
ascent stages remain the same. In the first problem, the final payload is constrained to move

essentially outside the atmosphere. Thus, the trajectory for the payload is computed easily as a
Keplerian transfer from the burnout of stage N to target interception. The constraint is imposed
by requiring the minimum altitude of the Keplerian trajectory to exceed a specified altitude. In

the second problem, the payload is allowed to move through the atmosphere, but it generates
no aerodynamic lift: a(r) = 0, Tf - ,rNC 5 v trf. This avoids any increase in drag and heating

7



which may result from lift. In the third problem there is no constraint on the payload so that

an aemassisted coasting trajectory is possible.

Figure I and Table I show typical numerical results for the three problems. The intercept

conditions am tf - 360 sec., Of = 45" (approximately 3100 mi.), hf = 400 km. (approximately

250 mi.), payload mass = mNP = 10 kg., isp = 300 sec. and N = 5. In general, the optimal

coasting periods for the powered stages turn out to be zero. The only exception is the fifth

stage of the Keplerian case. 0
The launch mass is least for the aeroassisted case. There is a simple physical

explanation. The short flight time demands hyperbolic speed (V > 42) while simultaneously

the trajectory must be kept close to the earth in order to intercept the target. To resolve these
conflicting demands, a net down force on the vehicle is needed. This force is supplied,

without expensive engine thrusting, by negative aerodynamic lift as the payload begins its coast

toward the target.
For the zero-lift. atmospheric case negative aerodynamic lift is also exploited, but because

of the no-lift constraint on the payload it occurs together with engine thrust in the fifth stap.

This accounts for the long burn-time of this stage; it allows more time for the negative 0

aerodynamic lift to act.
In the Keplerian case, the altitude of the payload is construainted to exceed 100 km. This

leads to a very large launch mass because it essentially eliminates effective utilization of
negative aerodynamic lift. The Keplerian solution does have a potential operational advantage.

Since the trajectory is essentially outside the atmosphere, communication with the payload is •

not blocked by atmospheric ionization.

IV. The Mid-course Universal Curve

The aeroassisted trajectory in Figure I has an obvious mid-course segment on which the

final payload coasts for an extended period of time until it begins its rise to the target. On the

segment there is a negative aerodynamic lift and the path is nearly horizontal. We have

observed such segments on all optimal aeroassisted trajectories where performance
requirements are high, i.e., tf is small, Of is large and hf is small. Moreover, they can be 0

modelled accurately by a single universal curve which relates altitude and speed. This unique

relationship is obtained by balancing the difference between centrifugal and gravity forces with

negative aerodynamic lift and minimizing the drag losses by choosing the angle of attack which

maximizes the lift-to-drag ratio. As will be seen, the time-dependent motion of the payload on

the universal curve also has a universal character. 0

8



Our development begins with some notation and simplifying parametric assumptions.
Let - CL" and CD" be the lift and drag coefficients which maximize - CIJCD. They are
obtained from (4) and depend only on the fineness ratio, X = ;N+1, of the payload. Recall that
the referene rea of the payload, SN+1, is given by (9) and is therefore determined by .N+l
and the mass of the payload, mNP. A dimensionless coefficient CL*r/2 plays an important
role in the equations which we will consider. It is given by

* CL* n = I CL (o) "1 P(ro) ro SN+1 (11)

Since CL" and SN+1 are fixed by X.N+1 and mNp , CL*T/2 depends only on mo and ro. For
the purpose of this section it is convenient to make the following choices for mo and ro:

mo= mNP, p(ro) ro I mNP(CL* SN+I)lI. (12)

This gives M()a I in (1) and 1CL*n =.

The required balance of forces on the nearly horizontal trajectory is achieved by setting the
0 normal acceleration, Vdy/dt, and yequal to zero in (1) and - - CL* in (4). The result is the

expression for the universal curve:

V = (l+H)-1 /2 [I- 3 (I+H) P(H)] -1/ 2 .  (13)

SThe reason for choosing ro by (12) is now clear: (13) contains only one parameter (;L) and at
the reference altitude (H=0) the dimensionless speed has a nice nominal value (V=2). Now let
P(H) be given by (3). Noting that g -= 103, it is easy to show that 1.3 < V < 4 implies IHI <
0.6 x 10-3. Since the expected variation of H is so small, (13) is closely approximated by

0 V = G(H) = (1 - 3 e-11H )-1/2. (14)

Even for a non-exponential atmosphere this expression is an excellent representation of (13)
because the exponential approximation of P(H) only needs to be accurate for IpHi < 0.6, or

0 Ihi :5 0.6 hs. For the payload described in the previous section, ro corresponds to an altitude
of 64.0 km. above the earth's surface.

Along the universal curve there are drag losses and V must decrease. This in turn causes
H, 0, y and a to depend on t. To obtain these dependencies we begin by substituting (14)
into (1) with A = 0:

9
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dV dH dR sin y

Here, G'(H) is the derivative of G(H) so

G'(H) e- LH [G(H)] 3. (16)

From this expression it is not difficult to verify that V = G(H) Z 1.3 implies G'(H) G(H) >
0.58 pt. Since g= 103, R= I and y is small, the identity on the right side of (15) is closely

approx mated by

D =-G'(H) G(H) sin y. (17)

This is the drag required for motion along the universal curve.
By (2) and (4), D defines a and thus CL. Since the line CL = (-CL*/CD*)CD is the

tangent to the lift-drag polar at CD*, it is a good approximation for it in the neighborhood of
CD. This approximation with D determined by (16) and (17) gives

L = -83- e-A [G(H)J4 sin

Substituting (14) and (18) into (1) yields the equations of motion on the universal curve.
To simplify these equations it is assumed with very little error that sin yay, cos y= I

and R =I +H - 1. Then

dHi ded= y G(H) , -= G(H),
d& dz

dY 3 CL"d= ?-- g" [G(H)] 3 y + G(H)- [G(H)]-1 . (19)

Because M(z) = 1 and V(r) = G(H(r)) the order of the original system of equations, (1), has

been reduced from five to three. However, the equations (19) are stil complicated because
they are coupled and nonlinear. Fortunately, the parameter g is large and this leads to a

singularly perturbed system whose solution can be obtained analytically.
The nature of the singularly perturbed problem is revealed more clearly by introducing the

scaled variables:

=H, =y, ( I)=( - e'R)" t2. (20)4
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Then (19) becomes

ddr

d-= p1 - e to(H)]+G(-O [(GlHlJ}. (21)

Standard singular perturbation theory can be applied to this system3 and it shows that the term
in the brackets goes to zero quickly and that the remaining, asymptotic, solution satisfies

dII
-F = a H(,)2

s Ce ,((GH)]-. [l G(3)J e (22)

This is a first-order system which can be integrated easily when expressed in terms of the

variable y =
* The details of the integration and back substitution to the original problem variables am

lengthy and are omitted. They produce the following formulas for the asymptotic motion along
the universal curve:

H(r) -T -H(x) , 0(/) C 9(x) -&x.),

Y(T) = (x). V(r)= (x) x e= x, + (C - (23)

where

*(x) = (3e - 1)-'(3e + 1), i(x) =[F(X)] 2

A(x)- n ( I-(x)], 0(x)=-x+2In1 (3 e-1), (24)
3 2

and xo is determined by O(xo) = V(To) or, equivalently, by

!= In [V(ro) - 11I 1 (V(To) + 1). (25)

It is easy to confirm that the above formulas cause H and V to lie on the universal curve.
Also, using (2), (14), (16), (17) and (24) it follows that

0
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CD = D (1 e- ILH V2)-1 _G'(H) G(H) y (jlne. H V2)-' = CD*. (26)

Thus, within the acuracy of the approximation sin y = y, the motion on the universal curve

actually does maximize the lift-to-drag ratio.
The functions f 0, 9 and 0 are plotted in Figure 2. The ranges of variables which are

shown are adequate for any reasonable target conditions. For example, with CL*/CD* = 2.5,

the value corresponding to X = 5, a unit change in t corresponds to a 720 change in 0. For 0

the entire range which is shown 111 : 0.61. This implies Y : 0.61 l - 6 x 10-4 rad. =

0.034P. The departure of y from zero is indeed small.

V. The Numerical Optimization Procedure

A. General Discussion

Over the years many procedures have been developed for the numerical solution of

problems in optimal control. One approach is to write the necessary conditions and solve the

resulting two-point-boundary-value problem by well developed techniques 4,5. There m
difficulties in applying this approach to the interceptor problem. The two-point-boundary-

value problem is replaced by a complex multi-point-boundary-value problem and derivatives of

the nonlinear functions appearing in the problem statement are needed. Moreover, reasonably

good initial estimates of the optimal solution and the corresponding necessary condition

multipliers are needed. Various gradient methods6,7 can be extended with less difficulty to the
multistage problem, but at best convergence is slow and terminal conditions cannot be met
accurately. Second-order gradient methods 8,9 have better convergence rates, but they require
second derivatives of the problem functions which are difficult to obtain because of the
complex nonlinear and multistage character of the interceptor problem.

In view of the above mentioned difficulties it seemed most appropriate to use a direct

method in which the infinite-dimensional optimal control problem is replaced by a finite-

dimensional approximation. Many approaches for doing this have appeared in the literature.

See, for example, the review given by Hargraves and Paris 10 . In our approach, the angle-of-

attack program, a(r), is approximated by a finite-dimensional functional parameterization and

the equations of motion with staging conditions are integrated accurately. The details of the

overall process, are described in the following subsections. Other direct methods, such as

collocation methods10 , could also be applied to the interceptor problem. A possible advantage

would be the elimination of special procedures, such as the one described in the next

subsection, for improving numerical conditioning. Collocation methods, as well as many other

direct methods, do have a have a potential disadvantage. Accurate solution of the differential

12
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equations may necessitate a fine collocation grid, which in turn increases the dimension of the

finite-dimensional optimization problem.

B. The Indirect Parameterization of a(t)

In the approximation of the angle-of-attack program several questions arise: the
dimension and the form of the functional representation, the accuracy of the corresponding
approximate optimum solution, the conditioning of the resulting numerical optimization
problem. Our experience shows that relatively low dimensional parameterizations are quite

effective, provided the approximating functions are chosen with some care. The dimensionality
is important because it has a strong effect on the computational time. Conditioning affects both
the speed and reliability of the optimization process.

0 A direct parameterization of a(t) is the most obvious way to proceed. For example, a

continuous piecewise linear function, which is parameterized by its values at its joints (points
of slope discontinuity), is simple and has flexibility in that the joints may be placed closely
where rapid changes in o@) are expected. The fatal shortcoming of direct p'os is

* poor conditioning of the optimization problem. The terminal constraints are very sensitive with
respect to small changes in a(r), especially when the changes occur early in the fligh. This is
not surprising in view of the open-ended integrations which occur in solving the equations of
motion.

To circumvent this poor conditioning, it is better to parameterize a(z) indirectly through a

0 direct parameterization of 1(r). In this approach, dy/dt is computed from the parameterized
y(r) and substituted, together with R, y, V and M, into the third equation of (I). This

equation then becomes through sin cc and L an implicit equation in z. The indirect
parameterization of az is obtained by solving the implicit equation. Note that this eliminates the
need to integrate the differential equation for dy/dr. Of course, the remaining differential

equations in (1) must be integrated as usual. When the indirect parameterization is used, the
entire trajectory is under more direct control. Changes in y(,t) near the beginning of the

trajectory have very little effect on the terminal portions of the trajectory. Thus, the sensitivity
of the terminal constraints to the parameterization is greatly reduced. Another advantage,

* perhaps less important, is evident at launch. Here, the differential equation for dy/dr has a

singularity because V = 0. With the y parameterization the differential equation is not integrated
and the normally troublesome singularity is circumvented-

The implicit equation for a presents possible difficulties. An inadmissible 1(,t) may be
specified, i. e., one in which the implicit equation has no solution. This corresponds

0 physically to requiring more transverse acceleration than is available. In most of our work

13
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inadmissibility has not been a problem, provided the line search in the optimization algorithm
has a procedure for reducing step size when it produces an inadmissible "v). Occasionally,

when a must be very large, as in the fifth stage of the Keplerian problem of Figure 1, it is

better to pcameterize a(t) directly, keeping the y parameterization for the other stages. The

actual numerical solution of the implicit equation is straightforward. One approach is to use
several Newton iterations. Alternatively, L may be approximated by a quadratic function of
sin a; then the implicit equation is quadratic in sin a and it may be solved by formula.

Another issue is the smoothness of a(t) and other problem variables. If Y(C) is

continuous but has slope discontinuities, as in the case of a piecewise linear parameterization,
the differentiation of Y() causes a('z) to be discontinuous. Even for smoother

parameterizations the problem is not avoided. At the staging times the vehicle mass, thrust and
aerodynamic parameters change discontinuously and this causes discontinuities in a(c).

Continuity of a(r) can be imposed by introducing, through the functional representationof (t),

an appropriate jump in dy/dc at the staging time. The value of dy/d't just after staging,

(dy/di)+ , is evaluated by using its defining equation, (1), with R, y, V and a continuous

across staging and the changes in M, A and aerodynamic parameters determined by the staging

equations of Section IL

It is also possible to introduce other smoothness constraints. For example, consider the
pitch angle, V = a + y. Although -y does not appear in the point mass equations, it has

practical implications tLecause the moment applied to the vehicle is proportional to its second
derivative. To avoid an impulsive moment it is necessary to require continuity of d/dc. This

leads to the condition: (dct/dr)+ - (dc/dc)- = (dy/dt)+ - (d/dr)-, where the superscripts give

the values immediately before and after staging. In order for the derivatives with respect to a

to exist, it is certainly necessary that a(r) be continuous. Thus, as in the previous paragraph,

both (d/dr)+ and (dy/dr)" are known. The resulting condition on (dc/dt)+ - (da/dt)- can be

obtained by differentiating the dy/dr equation once. This in turn defines the value of

(d2 /d2 )+. Thus, conditions on both (dy/dz) + and (d2 /d2 t)+ are obtained.

Our numerical experience has produced some guidlines on the functional form of the y

parameterization. Because of the large changes in y encountered in the first stage it has been

found necessary to use a parameterization with at least three free parameters. Since ^(O) = 90*, 5

a cubic in c satisfies this requirement and has been as effective as any other choice. For the

remaining stages, one free parameter suffices. When there are no smoothness constraints, a

linear function works well. Only one parameter is involved for each stage because %?) must be

continuous across staging. When the various continuity constraints are imposed, a more

elaborate, one-parameter represeitation is needed. For instance, when dIV/dr is continuous, S

we have found it effective to use 7(t) = a + bt + ce -0 + de-VI. The p -ameters c and d
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allow the matching of the constraints on (dy/dt) and (d2 /d2x)+. The values a and v are
chosen so that the effect of the continuity conditions does not persist for too long a period of

time. For a given functional form, the free parameters may be defined in different ways. It has
been found that problem conditioning is usually better if values of y at specified interpolation

points are used. For example, when there is one free parameter for a stage, the value of Y at

the thrust termination time is a good choice.

C. Formulation of the Finite-dimensional Problem

The variables in the finite-dimensional optimization problem are the parameters in the
representation of y(t) and the staging parameters: ai , %iB , and CiC, for i - I .... N. The

constraints, (10), on these parameters are implemented by means of nonlinear transformations

0 ar = (1 - e)(0.5 + 0.5 sin #i ), (27)

TiB = 0.5(1iB + ? B) + 0.5(,cB - ?iB) sin Ui, (28)

=iC = iC (0.5+ 0.5 sin gi) (29)

In (27), e > 0 is a small positive number which implements the strict inequalities on Ol. The
variables Oi, ui and gi become unconstrained variables in the finite dimensional optimization

problem. The parameters fiB and 'C are a scaling parameters which establish upper limits for

-TiB and TiC and improves the numerical conditioning of the opdmizatica problem. The

nonlinearities introduced by the transformations do not appear to affect the speed or reliability
of the numerical optimization process. If coasting of the powered stages is not allowed and the

guidelines of the preceding subsection are followed, there is a total of 3N +2 variables: N each
for (27) and (28), 3 for the parameterization of yin the first stage and I for the parameterization

* of y in each of the remaining stages.

The remaining constraints in the optimization problem are the terminal conditions (If) =

Of and R(tf) = Rf. Errors in meeting these equality conditions are evaluated by integrating the

differential equations of motion, which are fully defined once the variables of the preceding

paragraph are specified. The cost to be minimized is MOP, obtained from the oi by (6).

D. The Numerical Evaluations

In order to implement the optimization algorithm it is necessary to numerically evaluate

O(Tf), R(rf) and MoP and their gradients with respect to the variables. To avoid the very
complex direct evaluation of the gradients, first order finite differences on O(tf), R(cf) and

0 MoP are used. This is numerically expensive because each evaluation of the gradient requires
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n + I integrations of the differential equations, where n is the number of variables. Techniques

for speeding the integrations have been report by Howe et. al.1 1. For the specific results

reported here a fixed-step RK-4 procedure was used with approximately 10 steps per stage.

Rounding and truncation errors in the computation of the gradients can seriously degrade the

performance of the minimization algorithm. In this regard the naturally good scaling of the
dimensionless equations (1) is a distinct advantage. Balancing the rounding and truncation

errors by a proper choice of the finite difference increment is also important 12.
For those cases where the payload stage follows closely the universal curve it is possible

to eliminate for the payload the parameterization of y(t) and the numerical integration of the

equations of motion. At the time of final-stage burnout, V(Th) is known. By setting =ra,

formulas (23)-(25) define the motion along the universal curve. In general the conditions
V(?b) = G(H(mb)) and 7(fb) = 0 ( a very accurate approximation since t S 6 x 1 4 on the •

universal curve) are not satisfied by the ascent trajectory, so they must be imposed as additional

equality constraints. The universal curve is followed until a time % - %d is reached. After this

time a(r) is set to zero.. Because there is no aerodynamic lift and V> 1, the trajectory then

departs from the universal curve and rises toward the target. By evaluating this departure
trajectory at t = %f, the errors in the target conditions are determined. Because () = 0 one
variable is omitted from the parameterization of y(r); this is balanced by the addition of the

parameter d.

E. The Optimization Algorithm

The equality constraints are treated by the augmented Lagrangian method, which reduces

the constrained problem to a sequence of unconstrained problems. Both the penalty

coefficients and the multipliers are updated automatically by a scheme which is described on

page 292 of Fletcher 13. The unconstrained minimization program used in our computations is

a variant of the BFGS, quasi-Newton implementation due to Shanno and PhuaJ4 . It provides

superlinear convergence without requiring the evaluation of second derivatives. A reset

procedure has been added which greatly reduces the probability that the descent will terminate

prematurely due to accumulation of round-off errors in the quasi-Newton update.
Generally, the performance of the overall optimization procedure has been very

satisfactory. The number of gradient evaluations required to obtain a solution is between 300
and 400. This is not unreasonable for the typical number of problem variables: 17 for N = 5

and 20 for N = 6. Errors in meeting the specified target conditions are very small: about 1

meter in altitude and about 0.050 in range angle. The computational time for a solution is

typically between 60 and 90 minutes on an Apollo DN 4000. 5
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VI. Some Specific Results

Many optimal intercept problems have been solved using the methods and models of the

preceding sections. In this section we summarize some of our results for the aeroassisted

problem. The pitch angle is constrained to have a continuous derivative except at the entry and
exit points of the universal curve, where a(t) is allowed to be discontinuous. A variety of

problems have been solved where coasting of the stages is allowed. In these problems the

* optimal coasting times are either zero or so small that they have little effect on the optimal

launch mass. For all the problems considered here the coasting times have been set to zero.

The minimum burn time for each stage is 10 seconds and the payload mass is 10 kg. Except

for the results in Figure 6, the specific impulse is fixed at 300 seconds.
Additional details of the optimal aeroassisted solution described in Section III are shown

in Figure 3. The staging times are apparent. With the exception of the fifth stage, the optimal

burn times are at their lower limits of 10 seconds. The resulting vehicle acceleration A/M is

quite high, ranging from about 20 to 70 g's. If the minimum burn time is reduced below 10

seconds, even higher accelerations are obtained. The universal curve is followed from about
* 53 seconds to 194 seconds. The slight drop in V predicted by Figure 2 is evidelin Ther is

little loss in speed after the exit from the universal curve. The reason is obvious fiom Figue 1:
the trajectory leaves the atmosphere quickly, so there is little aerodynamic drag. Close
inspection of y(c) for 0 < r < 60 shows its linear-exponential parameterization. If the

smoothness constraint on. the pitch angle is removed and a(c€) is allowed to be discontinuous at

the staging points, the overall character of the trajectory is essentially the same and the launch
mass is reduced by about 0.5 %. Thus, the smoothness of the pitch angle does not seem to be
a very stringent constraint.

Figures 4 through 6 illustrate the effect of key parameters on the optimal launch mass.
* Note that the target altitude is 200 kIn., a more demanding intercept condition than the 400 kIn.

of the preceding problem. Figure 4 shows the relative performance of optimal aeroassisted

trajectories and optimal zero-lift, atmospheric trajectories. The advantage of the aeroassisted

trajectories is greater for shorter intercept times. For both types of trajectories the launch mass

grows very rapidly as the flight time approaches 320 seconds. Figure 5 shows the difference

between 5 and 6 stage aeroassisted interceptors. The 6 stage interceptor has a decided

advantage for the shorter flight times. Figure 6 shows the affect of reducing the specific
impulse. The 10 second reduction increases the launch mass by over 40 % for the shorter
flight times.

Additional solution results for the aeroassisted case suggest other trends. If all other

parameters are fixed, the optimal launch mass varies little if the range angle and intercept time
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of dhe target vary in direct proportion. Increasing the axial drag coefficient, CA, by 0.02

increases the launch mass by about 10 %. Increasing the mass density of the stages by 50 %

decrease die launch mass by about 6 %. More accurate models of atmospheric density have

very little effect on the launch mass.

VII. Conclusions

Models for high-performance, multistage rocket interceptors have been introduced.
Efficient numerical procedures for minimizing their launch mass with respect to staging

parameters and the angle-of-attack program have been described. These procedures circumvent
many of the complexities associated with the nonlinear, multistage character of the
mini iztion problem. Even though the angle-of-attack program is represented approximately,

the equations of motion are solved accurately. Inherent ill-conditioning of the procedure is

overcome by parameterizing the control variable (angle of attack) indirectly by a direct
parameterization of a state variable (flight-path angle). A key aspect of the optimal trajecton
is the negative-lift, aeroassisted character of the coasting payload stage. A simpeand aca
analytical model of this coasting motion (the universal curve) has been derived. This model

may prove useful in other problems where planetary atmospheres an encountered at hyperboli
speeds. The effect of various design parameters and target conditions on the optimal launch

mass are described. As the intercept time is reduced the optimal launch mass rises at an ever

increasing rate. 0
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Table 1. Numerical Data for Optimal-Trajectories in Figure 1

Burnout conditions for 4th stage
Type of Launch

Solution Mass(kg) h a. 8 (deg.) I (dg) se.
Aeoassisted 18,990 58.3 1.68 2.2 3.2 40.6

Zero Lift Atmospheric 23,070 57.0 1.89 2.5 3.5 42.5

Keplerian 50,720 64.6 1.82 5.8 -1.6 75.2

Burnout conditions for Sth stage

Coasting Tme
Type of between 4th

Acroassisted 0 63.7 2.11 3.7 0 52.6

Zero Lift Atmospheric 0 66.5 1.96. 24.0 0.005 201.9

Keplerian 90.6 127.8 2.10 19.5 -4.7 182.0
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Figure Captions

Fig. 1 Opcimal trajectories for minimum launch mass: A- Keplerian, B- aeroassisted, C-
zero-lift atmospheric, D- burnout of fifth stage, E- burnout of fourth stage, F- end of coast
for fifth stage. Payload = 10 kg.; range angle = 45 deg.; target altitude = 400 kin.; flight
time = 360 sec..

Fig. 2 Functions describing motion on the universal curve.

Fig. 3 Additional details of the optimal aero assisted trajectory shown in Figure 1.

Fig. 4 Optimal launch mass as a function of flight time. Number of stages = 5;
payload = 10 kg.; range angle = 45 deg.; target altitude = 200 km.; specific impulse =
300 sec..

Fig. 5 Optimal launch mass as a function of flight time for acroassisted trajectories.
Payload = 10 kg.; range angle = 45 deg.; target altitude = 200 kin.; specific impulse =
300 sec..

Fig. 6 Optimal launch mass as a function of flight time for aeroassisted trajectories.
Number of stages =5; payload = 10 kg.; range angle =45 deg.; target altitude = 200 km..
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Abstract or ICBM's outside the sensible atmosphere. tlence.
aerodynamic forces cannot be generated for vehicle

The problem of ninimum-time attitude control of a control. Instead, the thrust of a rocket engine is used
spinning missile is addressed. The missile is mod- to provide the necessary maneuver forces, with ye-
eled as a rigid body which is symmetric about one hide attitude control employed to point the thrust

* axis. The missile is assumed to have a large ro:l rate in the desired direction. Conventional thrust vector
about this axis of symmetry. Control is achieved by control systems tend to add both weight and com-
a single reaction jet which, when fired, provides a plexity, and as a result counter the objective of min-
constant moment about a transverse axis. Distur- imizing the weight of the guided warhead. The sim-
bance torques are assumed to be zero. The equa- plest control involves a single thruster at right angles
tions of motion are written under these assumptions. to the spin axis of the missile. In this scheme, the
The missile is assumed to have some arbitrary initial missile is given a large roll rate and the thruster is

• transverse angular velocity and it is desired to take turned on for a fraction of each revolution in roll and
it to some final attitude in minimum time while re- at tle right time during each roll cycle so that the de-
ducing the transverse angular velocity to zero. This sired attitude changes are achieved. Meanwhile the
problem is formulated as an optimal control prob- main thruster, by producing a thrust component per-
lem. Instead of taking the conventional approach of pendicular to the flight path. provides the necessary
solving a two point boundary value problem. we con- trajectory changes.
sider an alternative approach. This approach deals The problem of attitude control of spinning rigid

• with the specific case where only two thruster firings bodies has not received much attention recently. al-
are sufficient to change the attitude of the missile in though some research has been reported on this topic
minimum time. By iterating on the switch times and in the 1960"s. The reorientation problem of a spin-
integrating the state equations, we can compute tle ning rigid body is conceptually different than the
thruster firing times for a given set of boundary con- simple rest-to-rest maneuver of a non-spinning rigid
ditions. Some examples are included to illustrate the body. Because of the spin of the body, application of
appicration of the concepts presented. We conclude any moment about the transverse axes generates a
by proposing a mechanization of this control scheme precessional motion. If the initial transverse angular

and pointing out some further research directions. velocity is not zero. the problem becomes eve:i more
difficult because the problem loses its symnmetrv.

At hans and Falb 2 consider the problem of time-
1. Introduction optimal velocity control of a rotating body with a

single axis of symmetry. They show that for a single
SOv,,r the past three decades many papers and re- fixed control jet. the system has the properties of a

ports have treated various aspects of homing schemes harmonic oscillator. Thus. a switching curve can 1w
and trajectory control associated with these schemes, derived to i mplement the control scheme. The cass
\Most of these papers consider surface-to-air or air-to- of a gimlialled control jet and two control jets ar,'
air iissiles which us-, aerodynamic forces for trajec- also considered. No mention is made oft ie conl,,.t'
tory control. WVith thle advent of SD!. much atten- attitude reorientation problem. however. hlowe" prm-

ton has been focused on the interception of satellites poses an attitude control schetne for sounditg rock-

ets. The main feature of this scheme is that it uses a0 "Ph.D. Can,-idate in .. rospac-e Enginee'ring singlec control jet. The control jet is fired for a tix,.,t

iud,'rn Nfeinfwr. AIAA

"'|'rfesor, of Aerospace Engineering duration whenever certain conditions on direction
A.-.. ate F'low. AI [AA cosinos or transverse angular velocity are satisfied.
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This results in the alternate reduction of attitude er- b

ror and transverse angular velocity, finally ending in
a limit cycle. Some other references 16 ,4

,
1,'1' 7

,'
12 '15 , 13  Y

discuss the problem of reorienting a rotating rigid X
body which has no initial transverse angular velocity. _ b

Windenknecht16 proposes a simple system for sun
orientation of spinning satellites. In this scheme, the
desired attitude is achieved by a succession of 180'
precessional motions, each resulting in a small at-
titude change (small-angle approximations assumed IV
valid), until the spin axis arrives at an attitude corre-

sponding to the dead zone of the sun sensors. Cole el Figure 1: Axes systems.
al.4 prescribe the desired attitude change and solve
for the necessary torques but give no details on mech-
anization. Other papers which propose active atti- 2. Equations of Motion
tude control systems for spin stabilized vehicles have
been published by Adams', Freed 6 , and Grasshoff7. Figure 1 shows the orientation of the moving body
but none of these explicitly discusses the reorienta- axes Xb, Yb, Zb relative to the inertial reference axes
tion problem. Grubin s uses the concept of finite ro- xi, yi, zi, and also the Euler angles V,, 0, 0 relating
tations to mechanize a two-impulse scheme for reori- thc two axis systems. The body axes origin is at the
enting the spin axis of a vehicle. If the torques are missile c.g. with the Xb-axis assumed to be the axis
ideally impulsive, then the scheme is theoretically of symmetry; the yb- and zb-axes lie in a plane per-
perfect. But in the case of finite-duration torquing, pendicular to the longitudinal axis, xb. The missile is
considerable errors can result. Wheeler 5 extends modeled as a rigid cylindrical body. We also assume
Grubin's work to include asymmetric spinning satel- that the control jet is located in the Xb-Zb plane and
lites, but the underlying philosophy is the same. Por- pointed in the direction of the zb-axis. When fired,
celli and Connolly 13 use a graphical approach to ob- the control jet generates a constant positive moment
tain control laws for the reorientation of a spinning about the yb-axis.
body. Their results are only valid for small angles Since no moment is applied about the b-axis, and
and small angular velocities. For this linearized case since ly = I (the moments of inertia about the Yb-
they prove that a two-impulse control scheme is fuel- and zb-axes are equal for a missile that is axially
optimal. Two sub-optimal control laws are then de- symmetric about its Xb-axis), it turns out that w .,
rived for the case of limited thrust based on the two- the missile angular velocity component along the xb-
impulse solution. axis, is a constant equal to the initial spin velocity

of the missile. We then obtain a set of five state
equations: two dynamical equations involving the

None of the above papers consider time-optimal transverse angular velocities and three kinematical
reorientation of a spinning space body. The control equations giving the rates of change of Euler angles.
laws derived are based on small angle and/or im- Thus
pulsive torque approximations. For large angle ma- I,
neuvers with limited thrust, sizeable errors can re- =  1 / " + -- (1)
suit because of these approximations. In the present

work we examine a practical scheme for the attitude , - -. )(2)
control of a spinning missile. The control scheme 4/
proposed is not limited to small angles and small (Y Sin 6 + , Coso) sec 0 (3)
angular velocities and the initial transverse angu-
lar velocity can be arbitrary, i.e., it is not assumed 0 = cos - ,;. sin ()
to he zero. We have assumed no disturbances such
a-s aerodynaimic forces, gravity, solar radiation pres- + (.;sin1 +W, cos )tanO (5)

sures, or structural damping. Because of the short where
flight, times, these disturbances have negligible effect
on the dynanics of fle missile. These assumptions aln = trasverse angular velocity componrirs
yield a sinple mathematical model described by five along the - and z-axes, respectively,
state equations, riz.. two dynamical equations in- ('0.0 = Euler angles corresponding to yaw, pitch
volving the transverse angular velocities and three and roll, respectively,
kinematical equations giving the rates of change of
Euler angles. The theory of optimal control is used I", [ = the moments of inertia about the longitul-
to find a ninimunm-time control law. dinal and transverse axes, respectively,
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MV = the thruster torque about the y-axis. however, by assuming small angles and small trans-
verse angular velocity compared to the axial spin ve-

For convenience we choose to write Eqs. (1)-(5) in locity. For this linearized case. the equations of mo-
terms of dimensionless variables and parameters in tion can be analytically integrated. These assump-
accordance with the following definitions: tions also yield some analytic results for the time

-" f history of the time-optimal control.

A.= 1 - A Y
dm snste =3.1. System Equations and Optimald im e n sio n le ss tim e T = ";tC o t l D e c i i nControl Description

Now, if we redefine the - operator as differentiation
with respect to the dimensionless time T, the equa- In order to get a simplified set of equations which
tions become can be easily integrated and which yield analytic

*y = AQ + AY (6) solutions for the time optimal control, we assume
that Q., Q, and 0 remain small during the attitude

6 - (7) change maneuver. Eqs. (8)-(10) can then be written

L = (fY sin + Q, cos o) sec (8) as
S= 9 Csino+ coso (11)

0 = 92cosQ- sino (=Q cos6- Q, sin o (12)

o=1 +(Ysin6+ .coso)tan0 (10)

We assume that at the initial time, the missile
body axis system coincides with the inertial axis sys- Niote that no assumption has been made on the mag-

tem Th intia trnsvrseanglarvelcit ofthe nitude of v or o. Eq. (13) can be integrated with
tem. The initial transverse angular velocity of the teinitial condition o(T' = 0 to give
missile, however, is non-zero. We thus obtain the the i
following initial conditions: =T- To (14)

Q(To) = Q.0, fY(T 0 ) = Y0 We assume To = 0 without loss of generality. Sub-
t(To) = 0. O(To) = O. o(To) = 0 stituting this into Eqs. (11) and (12) we obtain the

The desired final conditions on the state variables linearized equations of motion for the four state vari-

are given by: ables QY I z, t, and 0 as

Q2,(T 1 ) = 0. QY(Tf) = 0 Iy = AQ, + AY (13)
t'(Tf) = -d, O(Tf) = Od. o(Tf) = free* Q2= -Afy (16)

The numerical values for the two parameters, Ac
and A., which will be used later in examples, are Iv = fY sinT+ Q cosT (17)

A = 0.9. AY = 0.02 0 = Y cosT - Q sin T (18)

This value of .4 corresponds to a length to diameter These four equations can be written in the standard

ratio of 3.775 for a cylindrical body of uniform den- state-space form by defining the state vector x as

sitv. A missile weighing 10 lbs. and having a uniform T f, ]

mass density of aluminum would have the following
dimensions: and the control u as

length = 12.30 in.. diameter = 3.26 in. u = AY

If the moment arm is half the length and the spin The standard form for the equations is
velocity is 50 rad/sec., AY = 0.02 corresponds to a
thrust of 2.79 lbs. x = Ax + bu (19)

w here
3. Solution for the Linearized 0 .4 001

System A -. 4 0 0 0
sin T cos T 0 0

',he equations of motion given by Eqs. (6)-(10) are cosT -sinT 0 0
nonlinear and no analytic solution can be found for
the general case of arbitrary angles and angular ve-
locities. Considerable simplification can he achieved. b = [ 1 0 0 0 (21)
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The initial state x0 is given by Eqs. (26) and (27) are the differential equations for
the state and costate vector. Eq. (28) is lerived

X0= [ x1 2.0 0 0 ]r from the optimality condition i.e. maximizing the
lamiltonian H. Eqs. (2!)) and (30) are the given

We want to find a control which will take this initial boundary conditions and Eqs. (31) and (32) are de-
state to the desired state xd rived from the transversality conditions. Hence, in

T the problem we have 8 differential equations ( Eqs.
Xd= 0 0 X3,d Xd (26)-(27) ) with 8 boundary conditions ( Eqs. (29)-

(30) ) constituting a TPBVP (two point boundary
while minimizing the time. value problem). Eq. (33) is used to determine Tf.

The question of existence of an optimal control for Eq, (27) can be solved analytically to obtain p as
this class of problems is discussed by Cesari3 . It is an analytical function of the dimensionless time, T
proven that a bang-bang optimal solution exists for and the initial condition, p(0). The expression for
the system described by k = A(t)x(t)+B(t)u(t) for a the switching function pi is
class of performance indices and constraints. lie also
shows that there may well be optimal solutions which p = Plcos AT + P2 sin AT - (cos AT
are not bang-bang. However, if the opinial solution 1-A
is unique, it must be bang-bang (under certain con- - cosT)+ I (sin AT- sin T)-( s n A T - s i T ) ( 3 4 )
ditions on the states and constraints). At this time -"

no general theorems are available on the uniqueness where the initial conditions p, = p(O), P2 = p2(O),
of optimal solutions for the one-sided controls, i.e., P3 = p3(0), and P4 = p4(0) are constants to be de-
0 < u 11 < ur . Therefore, we can only give necessary termined.
conditions for u* to be an optimal control. The expression for the control u' can now be writ-

Proceeding with the derivation of the necessary ten as
conditions on the time-optimal control, we write the u. u,,,,, if S > 0 (35)
performance index_ 0 if S < 0

Tf where for convenience we have defined S = pi. Eq. 0
/ idt (22) (35) states that the optimal control is a bang-bang

fTo type. A singular solution is not possible because if

with the given constraints S 0 over some interval, that implies that p, =

P2 = p3 = p4 = 0. This means that H E -1 for
all T. This contradicts the transversality conditionX= Ax+ bu (23) H(Tr) = 0.

0 < U < urna 1  (24) The switching function S will be periodic if A is
a rational number. However, it does not go through

The Hlamiltonian can be written as zero at regular intervals, i.e., the intervals between

successive times when S = 0 are not uniform. Thus.
H = Px 1 (25) depending on the boundary conditions, the constants

wV-re p is the costate vector. The necessary condi- Pl, P2., P3 and P4 will be different and each turn-on
,or ps toe ot ma v ct rol hnear cnd-and turn-off interval may be of a different duration.

tiuns for u to be an optimal control are Figure 2 shows the switching curve for .4 = 0.9, for

OH some values of the costate initial conditions Pi, P2,
x" - =- Ax* + bu* (26) p3 and P4.

p (27) 3.2. Two-pulse Solution
IX Starting at To = 0. typical time history curves for tle

It ,r ifp 0 (28) control u and the transverse angular velocity com-=" = 0 if p, < 0 ponents xi and x2, are shown in Figure 3 for (lie

and case where the final target state is reached with two

x(T) X(29) thruster firings. The switch times. Ti , T2 , T 3 and T7".
are the four unknowns. The thruster is fired from T,

x(T) = x,1 (10) to T, and then from T3 to T.
p() free ( The equations for .'I and X2, which are exact, can

p(T() he integrated starting from any arbitrary initial con-

p(T 1 ) = free (32) ditions at. T to obtain

11(T) =0 (33) xl(T) = ix cosA(T - T , )

4 •



20.0 + -[1cs(b-aA) sin a(1I4

100 cos bsin a] (.10)

2W)0- 6it X(T £X4,. + sin a(1 A)
£4 T 1 ,i cos(b -a.4) - x2, isin(b - aA4)j

0.0 &~0 10.0 15&0 20.0 + sin bsina](-)

*Figure 2: Switching function S for four different sets whereT- T+,
of costate initial conditions. a TTb = +T

0.03 Since we now have expressions for xl. X2. £23. and
0.03 £4 as functions of the running time T and the given

0.02 . .initial conditions, we can obtain expressions for these

0.0, F.~ ariables at T = T1 . The procedure is to use Eqs.
0 .. -. (36)-(37) and (40)-(41) with T, = To and u = 0 to
S0. 00 T.. T, obtain the state variables at T = T1. Then we let

T, T and use the associated initial conditions with
-0.1 .u =u,,,, to obtain the new conditions at T =T,.

-0.02 .. .. and so on. Finally, we end up with xl(Tf). x,(Tf)
_____________------___ X3 (Tf ), and X4(T 1  as functions of the boundary con-

0,0 1.0 ao 30 4.0 50 ciin n l , 3adT.Snetebudr

T conditions at T = To and T = Tfare known, this

Figure 3: u. x, and x, VS. T. procedure yields four equations in four unknowns.

TI, T2,, T3 and Tf. The problem can be simplifie'd.
u however, by noting that T3 and Tf can be chosen

+ (x,2, + u-) sin A(T - Ti) (36) such that £i,(Tj) = x(Tf) = 0. In this way T3 and
AT can be expressed as functions of T, and T, and

the problem is reduced to finding TI and T, such

cos) X ",.1(T - T') that £3 (Tf ) £ 3 j and X4(Tf ) = £4.d. Since T, and
(£2 Ta)T, cannot be expressed as explicit functions of the

-x, in .41T - , 3) initial conditions, the problem must be solved itera-
t IveIv.

The subscript i refers to arbitrary initial conditions. Tis procedure of writing the nonlinear equations
Substituting Eqs. (311) and (37) into the, equations x177f) = f(x.,. T1.T2,.T 3 . Tf) can be thought of as

*for X' and X4 in Eq. 12H. we obtain a numerical integration method which uses the state
ransition mnatrix of the system to Integrate the state

X*3 =X- a Slinm I - .1" T + .41:) from x( T) to x( T1 ) In four time intervals of vanl-
ax ,S co((1 A .4T + AT,) able duration, where over each interval the control

1 ?1 remains constant. The state transition met hod to
+ -(cro,((l 1 .4,T - AT,)- ros T) (.381 . icssdb oe 1

4siniulate linear systems isdicse NHw
InI Eqs. (36) and (37) we let T, T2., T =T 3 and

£: ~ ~ ~ ~ ? =csu - 0-.11n i and obtainl

-r',,sinii 1 - .1 iT- .1 i,) X1 3 = X 2 COS.4I(T 3 -T 2 )±£ 4- s in A(T 3 -T77) 112)

.-(-In X.i3T=:iT,)-, sin T%9 £.2i1.(T 3 -T 2,)±£2  cos A(T 3 -T2) 113)

These can be- easily teirgrarel With tihle L yen initial Now lett inig 7- T3. T Tf and tu =~ 11"' .W"

-ud It ions onl X3 and £4. IiTus we, obtain Cobt ain

X311T) = £3, - _in a(lI - A4) l(7-f) =£X 2 cosA(T1  z, T ,)z sin A(T; - 7"'

r sin(h - a.1) 4- £, , os(h - a.4)]+ si.41-T)(11

5.



0
X2(Tj) = X 2,2 cosA(T! - T) - X .sinA(T - T2 ) Example 1 Example 2

Umar - Boundary X1.0 0.0666666701 0.0282842708
-- (cos .4(77 - 7) - 1) (,15) Conditions x2.0 -0.0222222235 0.0282842708

X3.d -0.0041141893 0.3913032919
Setting x(Tf) = x2 (Tf) = 0 and using simple trig- r 4.d 0.4101158694 0.1566834726
nometric relationships, we finally obtain Turn-on T1  1.72042500 5.46257075

and 5.27150921 6.28533040 0
T3 = + (tan- (-x2,2) Turn-off T3  8.71603244 9.65781759

\-X1,2 Times 7"[ 10.47287320 12.13034180

- sin-i 2 + , ) (46) Table 1: Examples for the optimalitv test.

T1 , T2 or T3 or whether there are other T E [To, T]

/ -2.2 such that S(T) = 0.
-" T+ tani From Eq. (48) we know that S(TI) = S(T) =

A -l.2 S(T 3 ) = 0. Thus, we can write

(47) 2O +T sin.A2 cos T, - cos AT, sin AT, -sin T
sin- x / "- (47) cosATI sin AT, o TIl--A A T  in IA.. T,

2
l,~yrnai. cosAT2  sinAT , T-cos AT, sin ,-sinT,! c 1-A I-A

cosAT 3 sin AT 3  COsT,-c, AT, sin AT,-sin T,
1-A I-A

Clearly, adding 2" to T3 and T would still make P [01
x1 (T1 ) x'2(Tf) = 0. However. from Eq. (35) P2 0 (49)
and Figure 2, we observe that the intervals between P3 )
switches are never more than one period, i.e., !'2 02. * "n 3 r E(0 A " P4
Hence, we limit T E (0. and _3 - T2 E (0- 2,
In the next section a condition is derived which pro- One alternative way of writing this equation is
vides a check for the time-optimality of a two-pulse cosATj sin AT, T,-cos AT,

solution. [I-A 1 P4
cosAT 2 sin AT 2  Los"-TosaT, l

3.3. Optimality of the Two-pulse cosAT3 sinAT3  cosT,-caTA J P4
Uptimalitysin T, -sin AT,1

Solution = T-nATI(0sinT _-stnAT, (50)
--- 1-.4 I

Figure 3 shows the time history of the control for the sin Tl-sn AT,

two-pulse solution. Again, T1 and T3 represent the

first and second turn-on times, and T2 and Tf repre- This equation can be solved for L', 2 and C if the
sent the first and second turn-off times, respectively. 3 x 3 matrix on the left hand siae i non-singular.
From Eq. (35) (the necessary condition on control), Once pi, P2.P3 and P4 are known, S can be plotted
we know that as a function of the dimensionless time T and the

i fS >0two-pulse solution can be checked to see if it satisfies{ , 0 S < 0 the necessary conditions on the optimal control. If 0
ifS<0 S 0 for some T E [To. T],T $ Ti,T,,T 3 then

Since the boundary conditions are satisfie( by the the necessary condition is violated and we can reject
two-pulse solution, we only have to check the switch times as non-optimal. However, if S = 0

twopule oluio, w ony avetoclickfor the onyfrT=T- .3adTE[oTIte itabove necessary condition. Thus. in order for the only for T =T,T_.T3 and T E [T0 .T1 ] then the
two-pulse solution to be time-opt iriial, it should sat- switch t ines obtained remain candidates for being

isfy the following condition on S. time-optimal.
Two examples are presented here. '[le iitial and

S { < 0 if T E (Tf). T,) or T E (7T 7 () the desired final conditions an(l the corresponding
> 0 if T E (T . '.,) or 7 E (7.T'F) (48) switch times for the two examples are given in Ta-

ble 1. The first example is shown as the solid curve
Eq. (.18) gives the necessary condition for the time- in Figure 4. It caii be seen from this plot that S = 0
optimnality of a given two-pulse solution. We now only at tile switch times T, T2 and T3 given in Ta-
present a procedure to deterninime if the switching ble 1 for Example 1. Therefore, the solution is time-
times obtained satisfy tilie necessary condition on optimal. The dashed line in Figure 4 shows the sec- •
the optimal control. We compue S(T) such that ond example, where the two-pulse solution obtained
S(T 1 ) = S(T 9 ) = S(T 3 ) = 0. Then S(T) is plotted results in S(T) = 0 when T E [T0,T1). Therefore,
to see whether S(T) goes through zero at only T this solution is niot ti te-opt imal.



0 g=[1 0 00 0 IT (53)

The initial state xo is given by

XO X 2.0 X 0 0 0 1

. " W,2 want to find a control which will take this initial
state to the desired state xd

-5.0 *

Xd [0 0 X3,d X4,d free T

- 10 .0 ... ....m.... I . .t. . . . . .t. .

0.0 2,0 4.0 6.0 .0 10.0 12-0 14.0 16. while minimizing the total maneuver time.
T Filippov5 gives a theorem and proves the existence

Figure 4: Switching function S vs. T. of an optimal control for a Mayer problem. This the-

orem covers the more specific case of time-optimal

4. Solution for the Nonlinear control of Eq. (4.1) under the given constraints and
the boundary conditions. We note that the existence

System of an optimal control for the linearized system dis-
cussed in Chapter 3 can also be proven using the

In the previous section we linearized the system more general Filippov's theorem.
equations and obtained some simple expressions for In order to derive an expression for the time-
the time-optimal control. A two-pulse solution, optimal control, we write the performance index as
based on analytic integration of state equations, was
derived. These analytic e xpressions are only valid /TI
for transverse angular veiocities much smaller than J =j ldt (54)
the axial spin velocity, and for snall Euler angles.
When the transverse angular velocity is not of negli- with the given constraints
gible magnitude compared to the axial spin velocity
or the angles get relatively large, the analytic solu- x = f(x) + gu (55)
tions of Section 3 yield poor results. We consider
the complete nonlinear equations of motion in this 0 < U < Umax (56)
section and derive the necessary conditions for u" to We can also write the Hamiltonian
be an optimal control.

H =pTx _ (57)

4.1. System Equations and Optimal

Control Description where p is the costate vector. The necessary condi-
tions for u* to be an optimal control are

\Ve wish to find the time history of the control u
which takes our initial state to the desired state in x OH (x) + gu* (58)
minimum time. In order to write a state variable 0p

* description of the system, we define the state x of OH
the system as p- x -H(x*)p* (59)

X 9 0 I* { 0 if p > 0 (60)

and the control u as

and
u AY x(To) = xo (61)

Eqs. (f;)-( 10) can now be written in the standard .r(Tf) = .r,(Tf) = 0, x3 (Tf) = X.d, . 4(T)=.4.d
form. (62)

x = f(x) + gu (51) p5 (Tj) = 0 (63)

where 11(Tf) = 0 (64)

4r, Eqs. (58) and (59) are the differential equations for
* -AXI the state and costate vector. Eq. (60) is derived from

f(x) = (xi sinxs + £) cosxs)sec X4 (52) the optimality condition, i.e.. maximizing the Hamil-
X1 cos £X - X2 sin x5 tonian H. Eqs. (61) and (62) are the given boundary

1 + (zI sin£5 + x 2 cosx5)tanX4  conditions and Eqs. (63) and (64) are derived from
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0
the transversality conditions. Furthermore, we note by the two-pulse solution, it is verified that this hy-
from the theory of necessary conditions that pothesis, i.e., the two-pulse solution to the control of

the nonlinear problem is time-optimal if it. is close to
0H(x*, p% T)= d1f(x, p, 7) _ the time-optimal solution of the linearized system. is

OT dT indeed true.

This, in addition to Eq. (64), shows that

4.2.1. Algorithm to Compute the Two-pulse
H(x*, p', T) = 0 for all 7' E [To, 7] Solution

Hence, the time-optimal control problem is described The procedure used here is basically the same as
by 10 scalar differential equations given by Eqs. (58) in Section 3.2. However, instead of working with
and (59). The boundary conditions on the state and linearized equations by assuming small angles and
costate variables are given by Eqs. (61)-(63). This small transverse angular velocities, we will employ 0
constitutes a TPBVP (two point, boundary value here the complete nonlinear equations of motion and
problem). Eq. (64) is used to determine Tf. We integrate them numerically. We can solve this prob-
compare the results obtained in this section with the lem by assu.uing initial trial values for TI, T2 , T3
results that were obtained for the linearized equa- and 7f, integrating Eq. (51) numerically from To
tions of motion in Section 3.1. The control obtained to Tf, and then updating the four time parameters
in both cases is bang-bang and the switching is de- T, through Tf based on the difference of the desired
termined by the costate variable corresponding to final conditions and the computed final conditions, 0
xl(= Q). However, the expression for the derivative viz., XI(Tf) - Xi,d, X2 (T!) - X3,d, x3(Tf) - X3.d and
of the costate vector in the nonlinear case cannot be x4(Tf) - X4,d. However, as in Section 3.2, we can
integrated analytically. For this reason, no simple separate the problem into two parts. The param-
test for the optimality of the two-pulse solution for eters T, and T, affect only the final Euler angles
the nonlinear case (to be discussed in Section 4.2) x3 (Tf) and X4 (Tf), whereas T 3 and T are chosen
analogous to Section 3.2 can be devised. Also, un- such that the final transverse angular velocity corn-
like the linearized system where the Iamiltonian was ponents xl(Tf) and x,(Tf) are zero. The parame-
a function of time, 2T = 0 and therefore H = 0. ters 73 and Tf, as given by Eqs. (46) and (47), are

simple analytic functions of T and T2 . It should
4.2. Two-pulse Solution be noted that these equations involve no approxima-

tions. These have been obtained by integrating the
In Section 4.1 the necessary conditions for u" to be transverse angular velocity equations, which are un-
an optimal control are derived. We find that the affected by small angle and small transverse angular 0
solution to the time-optimal problem involves inte- velocity assumption. The algorithm to find T I, T2 ,
grating 10 differential equations with split boundary T3 and T is the following:
conditions and an unknown T. Instead of trying
to solve this complex TPBVP (two point boundary 1. Assume T, and T,2
value problem), we propose a method which requires
integration of only the state equations with the un- 2. Integrate Eq. (51) from To to T7 with u = 0
known switch times. and from T to 7'., with u = u.... (In order to 0

In this section we follow the same procedure used avoid discontinuities in the middle of an ir!tegra-
previously in Section 3.2 to obtain the opt imal switch tion step, integration is carried out in patched
times Ti, T2 , T3, and T/, except here we integrate the intervals with an integer number of steps in each
state equations numerically instead of analytically. interval)

This removes the required assumption of small an-
gles and small transverse angular rates and still leads 3. Calculate T3 and 7") from Eqs. (46) and (.17)
to the calculation of the two-pulse switch times T. 0
72, 7, and 7. Iowever. no optimality test,, anal- 4. Integrate Eq. (51) from T' to T3 wit 1 u= 0 and
ogous to the one in Section 3.3, can easily be de- from T3 to T with u =ur..
vised because of our inability to integrate the costate
equiations analytically. Nevertheless, if the solution 5. If fX(T!) - X3, < and 1X4(7T) - -4,d1 <
to the nonlinear problem is close to the solution of then stop. Else
the ti ne-optimal linearized problem, it is likely that
the solution will be time-optimal. To verify this hy- 6. Update TI and T, (For simplicity, the Newton- •
pothesis. we generated several optimal trajectories Iiaphson update scheme is used)
by varying the initial costate variables. By compar-
ing these trajectories with the trajectories generated 7. Goto 2

8 0



Example 3 Example 4

Boundary Xi,0 0.0666666701 -0.0209311595 0.5

Conditions 12.0 -0.0222222235 -0.0651306177
X3.d -0.0041141893 -0.2981263563 0.4

I4,1 0.4101158694 -0.0595274245
Linearized T 1.72042500 0.34050073
System T2  5.27150921 3.44888255

I -~ 10.428730 ______0.2_

T3 8.71603244 6.75078968
_"_ 10.47287320 R .72622400

Nonlinear T, 1.74532925 0.294241471
System T2 5.23598775 3.54733834 0.0

T3 8.72664626 6.69524732 0.0 2.0 4.0 8.0 8.0 10,0 12O
Tf 10.47197550 8.726646-6 T

Figure 6: Total angle a vs. T.

Table 2: Comparison of linearized and nonlinear sys-
tems.
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X. Figure 7: Path of the target in the X3,d-C4.d plane.
F igure 5: The path of Xb-a.xis in the x 3-X 4 plane.

5. Examples other words, a is the total angular distance of the
WVe consider two examples here. Tie given initial target direction with respect to the missile xb-axis.
conditions and the desired final conditions for the Figure 6 shows the angle a as a function of the di-

condtios ad th deire finl cndiionsforthe mensionless time T. \We see that the attitude change

two examples are listed in Table 2. Also shown
maneuver is completed in abotut 1.3 roll revolutions.

are the thruster turn-on and turn-off times obtained
In Figure 7 the position of the target direction rel-from the solution of both the linearized and the non- at e to he m v g misl b dy xs s se . gv n

linear problem for the two examples. It can be seen by the yaw angle L3d and the pitch angle L4d. is

that the results for the nonlinear system are close to plotted as the maneuver proceeds. An observer fixed
the results for the linearized system. Since we know in the missile body will see
that the results for the linearized system minimize

fashion. The attitude change maneuver is completed*the maneuver time, we conclude that the results for when r3.d L .4.d = 0.

the nonlinear system also minimize T.

Figure 5 shows the path of the tip of a unit vector The total transverse angular velocity Q
along the missile Xb-axis in the X3-.r 4 space, where A+ .i is plotted as a function of the dimension-
X3 and X4 are the yaw and pitch angles measured less time T in Figure 8. where we recall xLi = ,
with respect to the missile body axes at the start and 2 = Q_ As expected, Q becomes zero at the
of the maneuver. The position of the target with same time a = 0. Figure 9 shows the time history

* respect to the moving missile body axis system can of x, and X2 in the xl-x2 plane. When the x1. x,
also be shown. As the missile Xb-axis moves toward trajectory radius, given by Q, is constant in Figure
the target direction. the angles X3d and X4. change 9. the missile coasts. Conversely, when the radius Q
with time. We define a = cos-1 (cosX3 dcosX4 d). In changes. it means that the thruster is on.



6. Mechanization of the
Control Scheme

The algorithm to find the thruster switch times
which minimize the total maneuver time requires it-
erations. These iterations can be costly in terms of 0
the time required for the solution to converge and

0.08 O also in terms of the complexity of the iterative pro-
-,, cedure. Hence, this procedure cannot be used in real-

0.06 time situations. The switch times can be stored on
an on-board computer as functions of the boundary
conditions. Table look-up and interpolation can then
be used to compute the switch times and implement 0
the attitude change maneuver.

In the exact solution, we compute T1, T2. T3 and
Tf as functions of the initial angular velocities and

0.0 2.0 4.0 6.0 8.0 10.0 1Z the desired Euler angles. A control law, however, can
T be devised based on T1 and T2 only. After the first

Figure 8: Total transverse angular velocity vs. T. thruster firing has been completed, we can measure
the state variables at T2. The switch times T1 and
T2 can now be recomputed based on this measured
state. These new T1 and T correspond to T3 and
Tf, respectively, for the previous T, and T,. Thus
for the new T3 and T1 , T" - T3 = 0. In the presence
of interpolation, numerical, or measurement errors
this will not be quite true. Nevertheless, in reality
this scheme would probably be superior because it
can correct for system and measurement errors by
introducing a feedback based on the latest state in-
formation.

7. Future Research
0.08

If the boundary conditions happen to lie outside the
subset of the state space within which a two-pulse
solution is time-optimal, the scheme given in Sec-

0.04 .tion 6 cannot be used. We can, however, use the
geometric properties of the optimal control to gener-

" ate a table of switch times as functions of boundary
conditions over the desired range of the state space.
This approach involves redefining the Euler angles
such that t-(Tj) = 0(Tf) = 0. The roll angle o(Tf)

-0.04 .remains free as before. The state and costate equa-
tions can now be integrated backwards in time start-
ing at T = T7, with specified O(T") and costate vec-

-0.0 -0..04 ... . 0.4....tor p(Tf). By varying these initial conditions over-0 08 -0.04 0.00 004 0.08

x, the range of their possible values, we can generate
a table of thruster turn-on and turn-off times which

Figure 9: Trajectories of t ransverse angular velocity
components xl and .2. spans the entire subset of state variables for whichtime-optimal solutions are desired. By storing this

table in an on-board computer and using table look-
ip and interpolation to compute the firing times, this

scheme can be implemented in real time. Current •
research focuses on creating this table and imple-
nienting the control law using function generation.
The results of this approach will appear in a Ph.D.

1I) 0
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Abstract Rij =elements of the propagation ma-
trix as given in Eq. (10)

The interception of an ICBM at low altitude and r =position vector at time t
in a short time requires hyperbolic speeds. At the ac- r =magnitude of r
quisition time to, if updated information about the tra- S(1 , t) =reachable surface for impulse q
jectory of the target dictates a velocity correction for at time t
the interceptol, then it is of interest to assess the poten- t =time
tial for interception. The reachable surface is defined ti =dimensionless time of flight defin-
as the boundary of the set of all attainable points at ed in Eq. (8)
a given time t, for a fuel potential, conveniently ex- v =velocity vector at time t
pressed in terms of the Av available. Properties of this Vc =local circular speed at time to
surface are derived and its mathematical characteriza- v", vy, v, =components of v
tion is obtained. As an application of the concept, a X, y, z =components of position vector r
necessary condition for a successful interception of a
target given in terms of a capture function is explicitly 7 =flight path angle at time t
derived. &( ) =variation of ( )

6 =elevation angle of Avo
f =azimuth of AvoA
'7 = iAv/ve

Nomei-clature V =true anomaly at time t

A,..-, E =coefficients as defined in Eq. (18) Subscripts
a =semi major axis 0 =at the initial time to
e =eccentricity vector 1 =for the velocity, denotes the con-
e =eccentricity dition after the impulse at to
e", e, e, =components of e PO =position on nominal trajectory
f, g =components defined by r = fro P =actual position of the interceptor

+gvo T =position of the target
H =hyperbolic eccentric anomaly at

time t
h =angular momentum Introduction
h =magnitude of h

* h, h, h, =components of h The ultilizdtion of satellite-based missiles for in-
i =inclination angle tercepting ICBM's during their ascent constitutes one

A of the major efforts in building a defense program. An= Vse alternative approach is to use high performance, multi-
stage, earth-based interceptors. The very short flight

* Professor of Aerospace Engineerng Member AIAA times and long ranges require hyperbolic speeds and a

** Professor of Aerospace Engineering Associate Fellow AIAA high ratio of the take-off mass to payload mass.
t Research Assistant. Student Member AIAA In practice, precise information about the motion

Assistant Professor of Aerospace Engineering. Associate Mem- of the target is only known during the last phase of the
ber AIAA. interception. Thus the final interceptor stage for the



earth-based missile needs to be maneuverable so that t, it may be intercepted by a suitable admissible veloc-
corrections in the-i&nterception can be mahie. This is ity correction at to. It is the purpose of this paper to
conveniently expressed in terms of the potential char- obtain a mathematical characterization of the surface
acteristic velocity, Av, which can be produced by the S(t) which bounds the reachable domain D(t).
rocket engine of the interceptor. Considering its rel-
atively small size, it is important to fully assess the
maneuverability of the interceptor. Exact Calculation

P If r0 and v0 are specified at to, then the position
S(7, t) of the interceptor at any time t is given by

Arr =fro +gvo()

PO /where f and g are function of the time and they can
v /mbe calculated by the formulas in Appendix A. They

v0 are given in the exact and explicit form and the only
v0 numerical iteration involved is the solution of the Ke-

pier's equation to obtain the hyperbolic anomaly H for
M each given time t. We notice that the f and g functions

can also be computed using Taylor's series expansions
ro as given in Ref. 1. Since the time of flight At = t - to

is usually short, the use of these series, up to (At) 6 is
O, accurate. If an impulse Avo is applied at time to to

change the velocity to v, = vo + Avo, the new position
Fig. 1 Geometry of the problem. vector as function of t, can be obtained by the same

formulas by changing v0 into v1 . For a given "mag-
Suppose at the time to, when we start the veloc- nitude Av, with all possible directions, the increment

ity correction, the position vector r0 and the velocity Ar, from the nominal position PO (with Av 0 = 0) to
vector v0 of the interceptor are known (Fig. 1). For the actual position P (with Avo) describes the surface
earth-based interceptor, the speed is hyperbolic and S(t) which is the boundary of the reachable domain.
the position is lower than the intended interception An example of the surface is shown in 7ig. 2. For the
point. For satellite-based interceptor, the speed is el- numerical computation we have taken the gravitational
liptic and the starting position is higher. But, it is also constant as unity and the initial distanct r0 as the unit
possible that after the initial correction, the intercep- distance.
tor accelerates to hyperbolic speed. With this in mind,
the exact formulas presented in this paper, except as
indicated for the series expansions, concern the motion X
in this speed range. But the discussion and the char-
acteristic properties obtained are general. The time to
is the time when information about the trajectory of
the target has been updated to warrant changing the Z.
course of the interceptor. Without correction, the in-
terceptor continues to move on its Keplerian trajectory
since we consider that the interception is achieved in
the vacuum. For each admissible velocity correction,
the position of the interceptor for flight in the vacuum
is known for each t > to. For a given fuel potential Av,
let the set of all positions admissible at time t in three 772 = 0

dimensional space be denoted by D(t), which is called
the reachable domain at time t. Note that it is not nec-
essary to specify either the velocity of the target, or of r/l = 0.2
the interceptor to characterize an interception. Hence,
if a target position belongs to the reachable domain at Fig. 2 The reachable surface with Y7l > Y72.
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Properties of the Reachable Domain impulse Y7 is defined by the azimuth c and the elevation

angle 6. Then, we first observe that, for finite t, S is a

The potential for maneuverability of the intercep- surface, with curvilinear coordinates c and 6. periodic
tor, in terms of the fuel consumption, is characterized in c and 6 and has finite dimension. By continuity, it
by the total characteristic velocity Av which can be is a closed surface.
fractioned into several impulses Av,, applied at the dif- We shall give some properties of this surface:
ferent times t,. By definition, the reachable domain is Two surfaces S(Y71,t) and S('72 ,t) for the same t
the largest domain obtained at the time t and this in- with Y7 i q and 171772 > 0 have no common point.
volves an optimization process using many impulses. First, for any given vector Y, the resulting point P
Optimal interception for this type of high thrust pro- at the time t is uniquely defined. This is from the

* pulsion system has been discussed in Ref. 2 using the uniqueness of the trajectory generated by the differ-
primer vector theory and it has been shown that for ential equation of motion with prescribed initial condi-
minimum fuel interception with time constraint, we tion. Conversely, for any point P at time t, by Lambert
have the following possibilities: theorem, the orbit is uniquely deterrmned and hence

v 1 at time to and consequently Av 0 is uniquely de-
1. One inipulse applied immediately at the time to. termined. The correspondance is one to one. Now, if
2. One impulse applied at a later time t, > to. two surface S(Y7i, t) and S(172 , t) have a common point,
3. One impulse applied at the time to, followed by from one to one correspondance, we must have 71 = Y72

another impulse at mid-course at the time tn. which contradicts the assumption.
We now prove

If very short time is required, that is if At <

Atma, where At,a, is relatively small, then a unique Lemma If 7h > 72 at the time t, the closed surface
impulse applied at to is optimal. We assume that the S(q2,t) is enclosed by the closed surface S(Y71 ,t).
necessary condition for this case is satisfied and denote

* the strength of the impulse by the fraction q such that First, they can only be in a position such that one
Av = q7v, where v, is the circular speed at the distance encloses the other. Otherwise, let Y7 approach '72 from
r0 , that is v, = / = 1. The boundary S(I, t) of t7 continuously. There must exist some q3, '72 < )73 <

the reachable domain at the time t, using the impulse 71 such that S(T)3, t) and S(172, t) have a common point
with magnitude q will be referred to as the reachable and this is not true.
surface. Next, suppose that the opposite is true, that is

X S(I,t) encloses S('7,t). Then, for any q7 < 172 the
* surface S(7, t) will also enclose the surface S(71 , t) since

if there exists 0 < ?7 < 172 < Y71 such that S(773 ,t)
is inside S('71,t), there must exist some 71 < rY4 <

z '72 < i7l such that S('74,t) has a common point with

S(i71 ,t). On the other hand, since S(O,t) is a point,
S('7,t) should approach this point when Y1 - 0. This
cannot happen if S('7,t) for all 77 < r1 encloses the
finite surface S('71,t). Hence, the lemma is proved by

'If contradiction. With this lemma, we have the following
property.

Theorem Given Y7,a,. > 0. For any point P inside the
ro closed surface S(Y7mz, t), there enzsts a unique control

v cector q, with 0 < Yj < Y7, such that the transfer
leads to P at time t.

Fig. 3 Coordinate system. For any point P inside the given closed surface, by
Lambert theorem, there exists a unique control vector

If we use the coordinate system Mxyz with M r/ leading to the point P E S( 7 , t). If q > r7mar, by the
located at the initial point, and Mx along the vector r0 , lemma S(r7, t) encloses S('7,, t) which contradicts the
My orthogonal to it and in the initial plane of motion, assumption.

* and M.- completing a right-handed orthogonal system With the previous analysis, we now see that the
as shown in Fig. 3, then, the direction of the vector potential for interception is dictated by the reachable

3



surface S(71max, t), at maximum strength j7 = Thnas for Then, by using a dimensionless time of flight t' such

the impulse. To have a mathematical characterization that

of this surface, simply denoted by S(t) for each v7, we t' = .- L(t - to)
use a moving coordinates system, parallel to the initial Vr0
system but centered at the nominal point P0. Although we have the equations of the reachable ellipsoidal sur-
exact computation of Ar is available, for small values face as defined by Ar/ro, in the form
of q as in the present case of small velocity correction,

it is convenient and accurate to compute its linearized AX
expression. From Eq. (1), we have Ar = = rR 11 sin6 + /R 1 2 cos6cosE

AzO.Aq = - = 9R2 sinb+ iR22COS 6cs (9) O
Ar = -AVO (2) r

Aa - - = 7gcosbsinc

where Avo is the velocity increment at t = to. The ro

matrix ar/vov is the propagation matrix. It is a func- It is clear that this surface is symmetric with respect to
tion of the time and is completely determined in termsof te iitil coditon n roandvo.It i caculted the initial plane d.-fined by ro and v0. If the reference

orbital radius r 0 corresponds to a circular orbit period
according to of 90 minutes, a flying time of 3 minutes is t' = r/15

Or 9f T a g gT and we can use Taylor's series expansion of up to the

ro + v - + gI (3) order of t'6 to have an explicit and accurate represen-
o 0 tation of R(t). The series apply to both the elliptic

where I is the unity matrix and thd partial derivatives and the hyperbolic range. We have then

are given in Appendix B. Again, the formulas presented 1 3 1 _

are general. They are not restricted to small time in- Ril = t' +V -t- ksin-ot

terval At, and furthermore they can be used with any I 1

orthogonal inertial system. Therefore, by repeated ap" _(18k 2  54k2sin27 0 )tIs

plication of the same program of calculation, we can 60

obtain the reachable surface for the case of multiple- + -ksinYo(90k 2 -51 150k2sin27o)tI

impulse interception. 90 [ 3
By the transformation (2), it is clear that the R 12 = k coso 1t4- 3k sin 7 0t'

reachable surface S(t) is an ellipsoid whose principal 1 2 k

axes are proportional to the magnitude 7 of the im- - -(45k 2 -33-225k2sin2 7o)t,6]

pulse applied. If the Mxyz system as shown is Fig. 3 r 3. ,
is used, then we have R21= k costo -t4 ksin yot

1 6
r= ro 1 (4) -- (6k 2 - 5 -30k 2 sin 2 

70)t'6 (10)

and R 22 = t' - + 4ksinyot'4

vo = kv(sin o i + cosyo j) (5) -6 2  -kinT t

where 70 is the initial flight path angle and k is the "20 -

ratio specifying the initial speed in terms of the circular I k sin 70(18k 2 - 5 - 26k 2 sin 2 7o)t '6

speed t at distance ro. In this case, it is easy to verify 24

that the two vectors Of /Ovo and Ogg/Ovo in Eq. (3) are t3 g t' 3 + 1 ksin 70t' 4
lying in the Mzy plane and the propagation matrix is 6 4

of the form + I (9k 2 - 8 - 45k2 sin 2 Yo)ts

r0 120
Or R1  R 1 2  0 I - - ksinofO(6k 2 -5- l4k 2 sin 2yo)t16

-=oR(t) = R21  R?22 0i '6) 24
We notice that for very short time of flight, if we

Let neglect terms of order of t' 4 and higher, the propa- =
gation matrix R(t) is a diagonal matrix. The princi-

Avo = rve(sin 6 i + cos 6 cos c j + cos 6 sin c k) (7) pal axes of the ellipsoid are parallel to the initial axes.
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Furthermore, since R 22 = R33 = g, it is of revolution Mathematically, for given Y7, we consider the equa-
about the z-axis.-- tion of the reachable surface S(t), locus of all points P,

For an initial velocity v0 such that k = 2 and
-o = 30 *, we have generated the reachable surface rp = rp( 6 ,C,t). (12)
S(Y1, t) at the time t' = r/10, for the values of speed
correction Th = 0.2 and rh = 0.1. As expected, the For each t, considered as a parameter, this is a
surface S(Y72, t) is inside the surface S(77, t) and they parametric representation with curvilinear coordinates
have no common point. This is shocn in Fig. 2. The 6 and c. The equation of the envelope is obtained by
computation has been done using the exact formulas eliminating t between this equation and the equation
in Appendix A, and then the linearized version with
respect to Avo as given in Appendix B, and finally r = Xr LrL =r0 (13)
the explicit series as given in Eqs. (10). For small rl, - 9- O6 /a(

the propagation matrix R(t') computed from Eq. (10) With v1 = v0 + Av0 and Av0 given in Eq. (7),
and the values from Appendix B have excellent agree- and r. as given in Eq. (1) with v0 changed into v1 , we
ment. The relative errors in terms of the order of t" ,  have
for n = 3,4,5,6 are shown in Fig. 4 where we have
defined O9r,,
d et= fpro + g,(vo + Avo)

%error = max IJAr - Ar[j x 100 (11) Orp _ arp aAvo
I 06 1  06"(14)

Or, -rP Av0

10.0 0e 0vI 0f

9.0 We can then perform the exact computation of the en-
8.0 velope using the formulas in the Appendices A and B.
7.0 Figure 5 shows the envelope for the case where k = 2,

S6.0 70 = 30* and q = 0.1. With small speed correction,
0 5 03 the cone envelope is near the nominal trajectory and
c: "/for clarity the plot is expanded for the time interval4 .0- .077r < t' < .107r.

3.0-
2 .0
1 .0

0 .,0 . . . .1 . . . .1 . . .I I = lo r
0.0 0.1 0.2 0.3 0.4 0.5

T I ME

Fig. 4 Error percentage with Taylor's

series expansion.

In the following, the computation is done with the t'= .087r

series expansions.
As the reachable surface is propagated as function X

of t, at each value of t, there exists a maximum distance t' .0771r
* ~ rma and a minimum distance ri,, for the interceptor. Z y

By symmetry, it is obtained for c = 0 and a certain
value of 6 which can be easily computed by solving
a quartic equation. Of global interest 's the domain Fig. 5 The cone envelope of the reachable
which cannot be reached by the interceptor for any surface.
value of t less than a prescribed t,,,. This domain For small velocity change, if the linearized equa-
is outside of a cone, with vertex at the initial point tions are used, then
N!, which is the envelope of the reachable surface S(t).

* This envelope is also symmetric with respect to the r r + R(t')Av0 (15)
initial plane (ro, vo). r- r0
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where with the dimensionless time of flight t', and by Hence, in the computation of the intersection of the
Taylor's series, the-propagation matrix R(ti') is given cone envelope by this plane, it suffices to replace in
in Eq. (10), and Av 0 in Eq. (7) with v, = 1, and with Eqs. (15) and (18) q by Y7' and in the functions R.,
the coordinates of the reference point P0 being and z and y,, we leave k sin -t the same but replace

1 k,2 kcosTo by kcos-rocosi and consequently we replace
-- P O = =3 k by k2 (sin2-y0 + cos 2 70cos2 i). For each value of i
ro 2 3 we have two intersecting curves and at the maximum

+ -(3k 2 - 2 - 9k 2 sin2 7 0 )t'4  inclination r}
24 sin iz - k cos-to (20)

+ -ksin'o(-18k 2 + 1
60 the two lines concide, being the contact line between 0
S3k 2  5)t's + 2{(90k- 54 the envelope and the plane . This line is the tra-2- jectory in the plane i,oa: with initial velocity compo-

- 105k 2 sin2 Yo)k 2 sin2 70 nent k sin -yo and k cos yo cos i and zero velocity change.

- (22 - 66k 2 + 45k 4 ) }t 6  (16) Hence, it is given explicitly by the equations (16) with

_ t,3 + 1  . 71,4 the necessary change for the terms k cosy 0 and k 2 .

r6 4

+ .-!,(9k2 - 8 - 45k2 sin 2 YO)t' 5  Condition for Interception
120

-1ksin0(6k2 -5- 14k2sin 27 o)ts} At this point, it is relevant to specify the prob-
24 lem. The interceptor is launched on its nominal tra-

i =P 0 jectory only after some preliminary information about

r0 the target motion is acquired. The problem of mini-

With the series solution, simple computation of mum fuel intercepting an ICBM at low altitude using

the envelope can be done by considering its intersection a multi-stage earth-launched rocket has been discussed
with the plane making an inclination angle i with the in detail in Ref. 3. For long range and short tirrie in-
initial reference plane. First for i = 0, we have o = 0 terception at low altitude the interceptor must accel-

and Eq. (13) becomes erate to hyperbolic speed and use aerodynamic lifting
force generated by its last stage to follow the curva-

A sin 2 6+ B cos+ Csin/ bcos 6 ture of the earth. The last phase is the ascent in the
+ Dsin6 + Ecos6 = 0 (17) vacuum for interception with the initial condition such

that vo z 2 v,, 70 z 0 and r0 at near the top of the at-
where mosphere. The duration of this last phase is between

A = Y7(R1 2R 21 - R 22 R1 ) 2 and 3 minutes. If at the beginning of this phase, at

B = Y1(R2 1R 12 - RiiR 2 2 ) t = to, updated information about the trajectory of
the target is received, correction should be made. Let

C = 7(R 12R 22 - R22 I2 + R21 AlI - R,/ 2l)(18) rT(t) be the newly revised position vector of the tar-

D = -iPOR 22 + poR12 get whose position is denoted by T. We can evaluate

E = iPoR2 1 -fD, ° R the relative position from the nominal point P0 of the
interceptor to the target T

with the R1 given by Eq. (10) and zO and yo by
Eq. (16). Equation (17) can be transformed into a PoT = ArT (21)
quartic equation in tan 6/2. After solving for 6, we
substitute into Eq. (15) to have the equations of the as function of t near the intended interception time t1 .
envelope. If there exists a value of t such that the target is in-

If we intersect the cone by a plane, making an side the reachable surface, then certainly, interception
angle i with the initial plane, then by simple geom- can be achieved. Mathematically we define a capture
etry, it appears that it behaves like that in the new function using normalized variables
plane, the initial velocity has components k sin -o and
kcos 7ocosi and the planar impulse has the elevation F(A)2,A...5.t')
angle 6' with magnitude (RiiR22 - R 12 R 2 1)-

(R 22 Ai - R 12 A) 2  A- 2  (
/I = r2l -k2 cos27osin2 i (19) + (R 1 R22 - R 12 R 2 1)2 +R (22)
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We notice that, by setting F = v72, we have the equa- Returning to Eq. (24), for a time interval oft' =
tion in Cartesian-coordinates of the reachable surface 7r/15 (about 3 minutes), the principal axes of the el-
at the time t'. Then, let Afr, APT, and Ai r be lipsoid are A ,a = 0.2125v7, A,,az = Ain8  =
the components of the relative position vector Ar, /ro. 0.20797. It is nearly a sphere. With a maximum veloc-
The condition for capture is then ity correction of 600 m/sec, we have q = 0.0759. The

capture radius is Ar = 0.0158ro and it is about 100
F(AiT, A9T, AiT, t') _5 r/2  (23) km.

As a simpie illustration, consider the function to the
order of t'3 . The equation for the reachable ellipsoid is Conclusions

Ai 2  A2 In this paper we have introduced the concept of
2+ + 2(1 _ t,2/6)2 the reachable domain, which is the set of points at-+ t 2 /3)2 tainable at the time t by an interceptor flying in the

t(l _ t,2 - /2 = 0 (24) vacuum about a spherical earth and using a fuel poten-
+2 /) 2  tial represented by a total characteristic velocity Av.

We notice the fact that at high orbital speed and for a
It is interesting to notice that although the propagation relatively short time duration from an initial time to,
matrix R(t') depends on the initial speed v0 = kv, the largest domain is obtained by using the total im-
and flight path angle 70, to the order of t' 3 included, pulse applied at the time to. This domain can be ex-
it is independent of vo. This can be explained that actly calculated using the classical equations in astro-
although the reachable domain D(t') as it moves away dynamics. General properties of the reachable surface
from the initial point depends, on any order in t', on k which is the boundary of the reachable domain were
and 70, because the nominal position P depends on v0 , derived. To have a mathematical characterization of
the deviation of the actual position P of the interceptor the reachable surface, for small velocity change, we use
from P0 for short time interval is mainly influenced a linearized version and derive the partial derivatives
by the impulse Avo. The coordinates of the nominal to calculate the propagation matrix R(t), which is the
position P0 can be computed by either using the exact mapping of the velocity change Avo into the position
formulas in Appendix A, or more conveniently by the change Ar. With this linearization, it is seen that the
Taylor's series (16) valid for the whole range of speed. reachable surface is an ellipsoid and it is approximately

The actual position P of the interceptor is rp = a sphere for small time interval. As the time varies, the
(zP, yP, zP). Its coordinates can be obtained using the ellipsoid generates a cone which contains the totality
same series with the following change of the trajectories of the interceptor.

As an application of the reachable domain, we
k sin -o - k sin 7o + r sin 6 = (v,, /v,) have considered the case of interception of a target dur-

ing its last phase. If the revised information on the tra-

k2 sin 2 -to - (k sin o+Ysin 6)2  (V,/V) 2  jectory of the target, obtained at the acquisition time

to, dictates a change of the course of the interceptor,
k cos 7o - k cos -o + r/cos 6 cos f =(vy,/vC) then a capture function derived in explicit form can be

used to assess the feasibility of the interception for any
k2 -- [k2 + 172 + 2kir(sin 7o sin 6 + cos 70 cos 6 cos c)] given Av.

Another possible application of this concept is in
the case of several space launching bases either on the

Notice that, this is simply a change of definition of the same orbit or on a system of orbits. Then, with the
various terms. The new velocity v, has a lateral corn- knowledge of the possible launch site of the ICBM,
ponent i/vc cos 6 sin c. This gives the lateral coordinates and its typical trajectory, we can compute the intended

landing area and evaluate the requirement for its de-
=P gr cos6sin (25) fense in terms of the number of the space launching

r0 bases and their orbital characteristics.
This paper discusses the case of impulsive change

where the function g(t') is calculated from the last in the velocity. The case of continuous thrusting is
equation (10) with the change in k sin y0 , k2 sin 2 7o and obviously of interest and is currently under study by
k2 as above. By linearizing with respect to q and eval- the authors.
uating the difference Ar/ro, we have the equations (9).
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Appendix A Nominal Trajectory Equations

Given at to, 
h- O

ro=zoi+yoj+zok, Oh _ [ 0 z0  Y 1vo=v~oi+ 1 oJ+v 5 ok. 0- =  z 0 -ZOj

-Yo Zo 0
Oh _1 ( Oh ', T

Then with p = 1 the nominal trajectory can be corn- _0 = I (--ho)' h
puted by the following procedure, 4  Oh

Oap 2h ah

h=hi+hyj+h k=roxvo 4e 0 0 h, -hy]
e = e. i + e j +e, k =-h x vo -ro/o 0oo -h, 0 h,

p= h2  hy -hc 0

P [ 0 VZo V 0  1 Oh
a (for e > 1) + vs 0  0 -V 0  Ivo
h k-Vo V'o 0

sin vo = -ro" vo 4e 1( e\r
r -ro e Ovo e &0Vo

CosMo = - a l Overoe

tan VOo sin M1 
(ovo a)

2 = +cosvo asinVo 1 Oh 1e a hoo~ - aoe" sin vo + -ro
Ho e1 0 o h ov0o e Ovo) ro

tanh - = - tan- caCos 'o 1 ae 1 0e9 T
2 2 -e-+coe vo-- - ro

(t - to)a - 3/2 = e(sinh H - sinh Ho) - (H - Ho) 0v e Osio roe Ovoa
19tan v012 _ 1 Osm9 ' r'o*cos L9

(H can be computed for a given t) 0  - t+coson o a 2 ovo
e+1o H CsV 5tn -t . H 0tanh Ho/2 tan v/2 Oetan + Ttanh-

e 0vo (e + 1)-Ve'2- 1 0vo
p , e_ 9 tan vo/2

= 1+ e cos + V :¥/

f =1 -r[1 - cos(v - vo)] Oeo 1 an /

ro ao (1 + cosh Ho)a t

g = - sin(v - vo) OH 3(t - to)/2 Oa

1 (v - io)rcos(v - vo) Ov0 a 5/ 2 (e cosh H -1) 0vo_-- -tan-
h 2 P sinh H - sinh H Oe

ecoshH-I Ovo
r ro e cosh Ho - 10Ho

= °[1 -cos(M - o)] ecoshH-I Ov
P a tan v/2 tan v/2 Oe

r= ro+gvo Ovo (e -1) 0vo

= 
+ro 

+ 
-voe

+ ,' 1" I aH

e - 11 + cosh H vo
9 sinv = COS V(l +Cosy)9tanv/ 2

Appendix B Variational Trajectory Equations cos =0ta- Co i (I+CSL) (9 tan v12
O0  =-snl + cos~i OVa

Upon the application of a small impulse Avo at

to, the variation of the trajectory can be computed by
the following prodedure
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Or r Op Oe - cos v
Ovo- -r c oo - o )Oaf-  I [I - c*(,- V )1( -a + po,,op

r/ Ocosv Ocos 0+ ,Co V -30 - + Cos V'avo -

Osinv 9sin Lo'+ sin o j v + sin v a v

( Og ro ( r
- sin( - o)--

-rr Oh

o/ Osinr. 0 co5L'aCos °-W-jvo + si

a C os -sinv0)

ro 0( ~f )T+ V 0 ( ag)T +gJ0v 0 0

The variation of trajectory is approximately com-
puted by

40 Ar = aava.
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A SCHEME TO GENERATE THRUSTER FIRING
TIMES FOR THE TIME-OPTIMAL

REORIENTATION OF A SPINNING MISSILE

E. Jahangir" and R. M. Howe*
University of Michigan

Ann Arbor, MI 48109-2140

Abstract Most of these papers consider surface-to-air or air-to-
air missiles which use aerodynamic forces for trajec-

A scheme to generate thruster firing times as func- tory control. With the advent of SDI, much atten-
tions of the initial and the desired state of a spinning tion has been focused on the interception of satellites
missile is described. The missile is modeled as a rigid or ICBM's outside the sensible atmosphere. Hence,
body which is symmetric about one axis and which aerodynamic forces cannot be generated for vehicle
has a large roll rate about this axis of symmetry. control. Instead, the thrust of a rocket engine is used
Control is achieved by a single reaction jet which, to provide the necessary maneuver forces, with ye-
when fired, provides a constant moment about a hicle attitude control employed to point the thrust
transverse axis. Disturbance torques are assumed in the desired direction. Conventional thrust vector
to be zero. The missile is assumed to have some ar- control systems tend to add both weight and com-
bitrary initial transverse angular velocity and it is plexity, and as a result counter the objective of min-
desired to take it to some final attitude in minimum imizing the weight of the guided warhead. The sim-
time while reducing the transverse angular velocity plest control involves a single thruster at right angles
to zero. This minimum-time reorientation problem to the spin axis of the missile. In this scheme- the
is usually handled by solving a TPBVP (Two Point missile is given a large roll rate and the thruster is
Boundary Value Problem). The control history thus turned on for a fraction of each revolution in roll and
obtained is stored in an on-board computer and im- at the right time during each roll cycle so that the de-
plemented on-line by table look-up. We describe a sired attitude changes are achieved. Meanwhile the

* scheme which does not need to solve a TPBVP. In- main thruster, by producing a thrust component per-
stead, coordinate transformations are used such that pendicular to the flight path, provides the necessary
each backwards integration of the transformed state trajectory changes.
and costate equations yields a unique time-optimal The problem of attitude control of spinning rigid
trajectory. By storing the state and the ,ssociated bodies has not received much attention recently, al-
time-optimal control at discrete points in time, a set though some research has been reported on this topic
of boundary condition points can be generated for in the 1960's. The reorientation problem of a spin-

• which the minimum-time control is known. This set ning rigid body is concrptually different than the
of points can later be used to generate a table of simple rest-to-rest maneuver of a non-spinning rigid
thruster firing times as functions of the current and body. Because of the spin of the body about its
the desired state of the missile. Some examples are symmetry axis, application of any moment about
plotted to illustrate the application of the concepts the transverse axes generates a precessional motion.
presented. If the initial transverse angular velocity is not zero.

* the problem becomes even more difficult because the
problem loses its symmetry.

1. Introduction Athans and Falb' consider the problem of time-
optimal velocity control of a rotating body with a

Over the past three decades many papers and re- single axis of symmetry. They show that for a single
ports have treated various aspects of homing schemes fixed control jet, the system has the properties of a
and trajectory control associated with these schemes. harmonic oscillator. Thus, a switching curve can be

derived to implement the control scheme. The cases
' Ph.D. Candidate in Aerospace Engineering of a gimballed control jet and two control jets are

Student Member, AIAA
"Professor of Aerospace Engineering also considered. No mention is made of the complete

Associate Fellow, AIAA attitude reorientation problem, however. Howes pro-



poses an attitude control scheme for sounding rock-
ets. The main feature of this scheme is that it uses a
single control jet. The control jet is fired for a fixed "
duration whenever certain conditions on direction W
cosines or transverse angular velocity are satisfied. Y,

This results in the alternate reduction of attitude er-
ror and transverse angular velocity, finally ending in •
a limit cycle. Some other references 16.3, 1,5 ,6,7, 2 ,15 ,13

discuss the problem of reorienting a rotating rigid
body which has no initial transverse angular velocity.
Windenknecht'

6 proposes a simple system for sun

orientation of spinning satellites. In this scheme the Figure 1: Axis systems.
desired attitude is achieved by a succession of 180'
precessional motions, each resulting in a small at- 0
titude change (small-angle approximations assumed tical for a real-time control algorithm. One possible
valid), until the spin axis arrives at an attitude corre- alternative is to precompute the thruster firing times
sponding to the dead zone of the sun sensors. Cole et by solving a TPBVP for discrete values of the desired
ai.3 prescribe the desired attitude change and solve boundary conditions. These thruster firing times can
for the necessary torques but give no details on mech- then be stored as a table in an on-board computer
anization. Other papers which propose active atti- and the control scheme can be implemented in real-
tude control systems for spin stabilized vehicles have time by table look-up and interpolation.
been published by Adams', Freed 5 , and Grasshoff6 , Since we must store the control history as a func-
but none of these explicitly discusses the reorienta- tion of the boundary conditions, we look for ways to
tion problem. Grubin7 uses the concept of finite rota- generate a set of boundary condition points for which
tions to mechanize a two-impulse scheme for reorient- the thruster firing times are known without solving
ing the spin axis of a vehicle. If the torques are ide- an iterative problem. To this end a new state vector
ally impulsive, then the scheme is theoretically per- is introduced in Section 4 which is related to the orig.
fect. But in the case of finite-duration torquing, con- inal state vector by a transformation. We will show
siderable errors can result. Wheeler' 5 extends Gru- in Sections 5 and 6 that we can generate a trajectory
bin's work to include asymmetric spinning satellites, on the boundary of the set of reachable states by as-
but the underlying philosophy is the same. Porcelli suming a set of final conditions and integrating the
and Connolly l3 use a graphical approach to obtain transformed state and costate equations backwards
control laws for the reorientation of a spinning body. in time. Since the boundary of the set of reachable
Their results are only valid for small angles and small states defines all the minimum-time trajectories, we
angular velocities. For this linearized case they prove can obtain all the desired boundary conditions and
that a two-impulse control scheme is fuel-optimal. the associated time-optimal control histories by vary-
Two sub-optimal control laws are then derived for ing the final conuitions over the range of their possi-
the case of limited thrust based on the two-impulse ble values. Finally, in Section 7 we ilustrate the pro-
solution. Most recently, Jahangir and Howell have cedure by plotting some example time-optimal tra-
proposed a time-optimal scheme which does not re- jectories.
quire solving a TPBVP. This scheme can be used
for the specific case when only two thruster firings
are sufficient to complete the time-optimal attitude 2. Equations of Motion
change maneuver. If the boundary conditions hap-
pen to lie outside this subset of the state space, the Figure 1 shows the orientation of the moving body
algorithm given by Jahangir and Howe fails to con- axes Zb, Yb.-b relative to the inertial reference axes
verge, since there does not exist a two-pulse time- xi,y,, z,, and also the Euler angles 'k, 0, 4€ relating
optimal solution for such a case. If a control law is the two axis systems. The body axes origin is at the
desired for boundary conditions which require more missile c.g. with the xb-axis assumed to be the axis
than two thruster pulses, we must solve a TPBVP of symmetry; the Yb- and zb-axes lie in a plane per-
involving ten nonlinear differential equations. pendicular to the longitudinal axis, zb. The missile is

Both the two-pulse solution and the multiple-pulse modeled as a rigid cylindrical body. We also assume
solution require iterations and, therefore, can be that the control jet is located in the Xb-Zb plane and
costly in terms of the computer time required for the pointed in the direction of the zb-axis. When fired,
solution to converge and also in terms of the com- the control jet generates a constant positive moment _
plexity of the iterative update scheme. Hence, an on- about the yb-axis.
line iterative procedure does not appear to be prac- We have assumed no disturbances such as aero-
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dynamic forces, gravity, solar radiation pressures, and the control u as
or structural damping. Because of the short flight
times, these disturbances have negligible effect on the u = AY
dynamics of the missile. Since no moment is applied
about the zb-axis, and since Iy = I. (the moments Eqs. (6)-(10) can now be written in the standard
of inertia about the yb- and zb-axes are equal for a form.
missile that is axially symmetric about its Xb-axis), it x = f(x) + gu
turns out that ws, the missile angular velocity com-
ponent along the z-axis, is a constant equal to the where
initial spin velocity of the missile. We then obtain a
set of five state equat;Dns: two dynamical equations AX 2
involving the transverse angular velocities and three -Ax,
kinematical equations giving the rates of change of f(x) = (Z1 sin X5 + X2 cos X5) sec X4 (12)
Euler angles. Thus X1 cos xs - X2 sin £s

+I + (X ISill X5 42 cos x5) tan X4

We assume that at the initial time, the missile body
=(usin + w, cos ) sec 0 () axis system coincides with the inertial axis system.
0= wycos b - w sin e (4) The initial transverse angular velocity of the missile,

however, is non-zero. We thus obtain the following
=w: +(wy sin € + wzcos€) tan 0 (5) initial condition:

where

wy,w - trasverse angular velocity components XO X[, 0 £20 0 0 0 (14)

along the y- and z-axes, respectively, We want to find a control which will take this initial

Vk, 0, = Euler angles corresponding to yaw, pitch state to a desired state, described by some non-zero
and roll, respectively, desired yaw and pitch angles and zero final transverse

longitu- angular velocity, in minimum time. The desired finalI=, I4 = the moments of inertia about the logt-state vector, Xd, can be written as:

dinal and transverse axes, respectively,

My = the thruster torque about the y-axis. xd = [ 0 0 X3. d X4,d free ]T (15)

For convenience we choose to write Eqs. (1)-(5) in We also assume an upper bound uf on the control
terms of dimensionless variables and parameters in u. Thus, the constraint on the control can be written
accordance with the following definitions: as:

Qy= = Q= 0<U<Umaz (16)* A l La.-,-:
IV -

dimensionless time T ='t The numerical values for the two parameters. A
and u,,., which will be used later in examples, an

Now, if we redefine the - operator as differentiation
with respect to the dimensionless time T, the equa- A = 0.9, u,a = 0.02
tions become

Qy = AQ, + Ay (6) This value of A corresponds to a length to diameter

02, = -Af2 (7) ratio of 3.775 for a cylindrical body of uniform den-
sity. A missile weighing 10 lbs. and having a uniform

= sin o + 2, cos 0) sec 0 (8) mass density of aluminum would have the following

Qy = 3 cos 0 - 0, sin o (9) dimensions:

= 1 + (0, sin o + Q. cos 0) tan 0 (10) length = 12.30 in., diameter = 3.26 in.

In order to write a state variable description of the
* system, we define the state x of the system as If the moment arm is half the length and the spin

velocity is 50 rad/sec, uno_ = 0.02 corresponds to a
x= [ Q, f 0 0 € ]T thrust of 2.79 lbs.

3
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3. Time-Optimal Control This, in addition to Eq. (26), shows that

Formulation H(x', p*, T) = 0 for alI T E [To, T

The problem, as stated in the previous section, is Hence, in the problem we have 10 differential equa-
to find a control u(T) which takes the initial state, tions (Eqs. (19) and (20)) with 10 boundary con-
x0 , to the desired state, Xd, in minimum time while ditions (Eqs. (22)-(25)) constituting a TPBVP. As
satisfying the constraints x = f(x) +gu and 0 < u < mentioned earlier, the solution of this problem re-

tn. This is one specific case of a general Mayer quires iterations and, therefore, is difficult to imple-

problem. Filippov4 gives a theorem and proves the ment in real-time. In the actual missile, thruster
existence of an optimal control for a Mayer problem. firing times are computed off-line and are stored as
At this time no general theorems are available on a table in an on-board computer. Function gener-
the uniqueness of optimal solutions for the one-sided ation is then used to compute the thruster turn-on
controls, i.e., 0 < u < u,.a,. Therefore, we can only and turn-off times as functions of the boundary con-
give necessary conditions for u* to be an optimal ditions.
control. Instead of obtaining the tbruster switc:. L:,,1es by

In order to derive an expression for the .,me- solving this iterative problem, we consider aa alter-
optimal control, we write the performance index native approach in the next section. An alternative

optimal control formulation in terms of a new state
Tf vector is given. It is shown that, by assuming a set of

J I ldt (17) final conditions and integrating backwards in time,
we can generate time-optimal trajectories in the state

We want to minimize the performance index J under space.
the constraints of Eq. (11) and (16). Thus, we can
write the Hamiltonian 4. An Alternative Formulation

H= p T
i _ 1 (18) of the Time-Optimal

where p is the costate vector. The necessary condi- Control Problem
tions for u* to be an optimal control are We define a new reference axis system. This axis

OH system is fixed in the target and its z-axis points
_ f(x) + gu°  (29) along the desired direction of the missile zb-axis. The

orientation of the missile with respect to an observer

p= H(x)p (20) fixed in the target is given by the Euler angles, y3,
'9x y4 , and ys, where Y3 , y4 , and Ys correspond to yaw,

I pitch and roll, respectively. We also define y, = Z
u 0u.. if pp <> 0 (21) and Y2 = X2. Thus, we can write a new state vector

and Y Y1 Y2 Y3 Y4 Y.]
x(T) = x0  (22) The two state vectors x and y are related by a trans-

x(T) = xd (23) formation (see Section 6.3 for the transformation re-
lations). The equations of motion can be written in

p(T) = [ free free free free free IT (24) terms of this new state vector and are given by:

p(T)= [free free free free 0 ]T (25) y = f(y) + gu (27)

We assume the initial and final conditions, respec-
H(T) = 0 (26) tively, to be

where H(x) = -Of/Ox. Eqs. (19) and (20) are y(T) = ;"0 = L YiU Y2,0 Y3,0 Y4,0 Y5,0 IT
the differential equations for the state and costate (
vector. Eq. (21) is derived from the optimality con- (28)
dition, i.e., maximizing the Hamiltonian H. Eqs. Y(T,) = = [ 0 0 0 0 free ]T (29)
(22) and (23) are the given boundary conditions and A time-optimal control problem can be formulated
Eqs. (24)-(26) are derived from the transversality for this system, similar to Section 3. We want to
conditions. Furthermore, we note from the theory of minimize the maneuver time, so we can again write
necessary conditions that the performance index as

alH(x °, p,T)= dH(x*, p,T) = 0 J = J ldt (30)

OT dT T'
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under the constraints of Eqs. (23) and (16). 0J, f) ,
Proceeding with the derivation of the necessary (R16t

conditions on the time-optimal control, we write the a f-

Hamiltonian
H = qTy - 1 (31)

where q is the coetate vector. The necessary condi-
tions for u* to be an optimal control are

"= "' = f(y-) + gu" (32)
Figure 2: The set of reachable states for a 2-D sys-

= H tern.
q -! = H(y*)q* (33)

• a if q1> 0 (4 The Set of Reachable States

- 0 if q* < 0 for a 2-D System
The boundary conditions on the state variables are
given by Eqs. (28) and (29). The boundary condi- In this section we examine the characteristics of the
tions on the Haniltonian and the costate variables following 2-D system:

are derived from the transversality conditions: i = h(z, u)

* H(T) = 0 (35) where z is a 2 x 1 state vector and u is the scalar

q(T0) = q0 =  free free free free free I]T control. The desired final condition is assumed to be
(fe) the origin, i e., z(t!) = 0. If we subject the system
(36) with final state z(tj) = 0 to all control histories and

q(Tf) = af = [ free free free free 0 jT (37) integrate the system backwards in time starting at

We observe that this formulation still results in a tf, we obtain a set of states that are reachable from

* TPBVP. If the initial state vector, y(T), is specified, the origin at time t-ti, or simply the set of reachable

an initial costate vector, q(TO), must be determined states. We denote the set of reachable states simply

which results in the desired final state and costate as R(t - tl) in Figure 2. In the figure the boundary

vectors. However, the state and costate vectors at of the set of reachable states at time t1 -t! is denoted
the final time have some simple features. Each of by aR(ti - tf). It is well known from the geometric

the components of these vectors is either zero or free. properties of the optimal control that the boundary

Therefore, it is worthwhile to examine the system of the set of reachable states defines all the minimum-
* characteristics if the state and costate equations are time solutions. We, therefore, conduct the following

integrated backwards in time starting at T!. experiment:
In the next section we discuss a two dimensional Let um,,(z,s) be the optimal control which is ob-

system in terms of some simple sets in the state and tained by minimizing the Hamiltonian with respect

costate space. By looking at the problem from a to the control, where s is the 2 x 1 costate vector.

geometric point of view, we show for this 2-D sys- Hence, if z* is an optimal motion, it satisfies

tem that the origin can be connected to all points i" = h(z ,i,,(z*,s)
in the set of reachable states in minimum time by
varying the costate vector over R2 and integrating where s" is a solution to the related costate equa-
the system equations backwards in time. We note tions. Clearly, z'(tf) = 0.
that this procedure of integrating the system back- In order to obtain a specific time-optimal trajec-
wards in time is fairly common. The most familiar tory, we need to assume some final conditions on the
example is the simple inertia system, i = u. In this costate vector. We let s(tf) = sl, where s/ is an

* system the state equations are integrated backwards arbitrary constant vector. The system equations,
in time, using the time-optimal control, to obtain a z = h(z, umin(z,s)), can now be integrated back-
switching curve in the state space. wards in time starting from the final time t! to ob-

In Section 6 we apply this scheme to the complete tain a trajectory z(sf, t-tf ) shown in the figure. The
nonlinear minimum-time attitude control problem of trajectory z(s!, t - t!) represents the fact that it is a
a spinning missile. Using the procedure analogous function of the specified final costate vector, s!, and
to Section 5, all mimimum-time trajectories can be the time parametet, t - t1 . This trajectory connects
generated. By storing the state vector at discrete all points along its path to the origin in minimum

* points in time along the minimum-time trajectories, time, Also, as mentioned earlier, this minimum-time
we are able to generate a set of points for which the trajectory lies on the boundary of the set of reach-
thruster firing times are known. able states. By storing zgs], t - t!) at discrete points
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in time, we can obtain a set of points in the state sile frame, whereas the vector y gives the orientation
space for which the time-optimal control history is of the missile with respect to an observer fixed in
known. If we assume a different initial sf, another the target. Hence, it is desirable to store the bound-
time-optimal trajectory is obtained. By varying s/ ary conditions in terms of the original state vector x.
over V and integrating the system for each 3f back- The boundary conditions in terms of the x vector are
wards in time, all trajectories on the boundary of the given in Eq. (14) and (15). The state vector y(T')
set of reachable states can be generated. In this way can be transformed back to our original system to
all the reachable states can be obtained at discrete obtain the corresponding boundary conditions x1,0,
intervals and the associated control history can be X2, 0 , X3,d, and X4,,.

stored as a function of these states. The procedure to generate the control history as a
In the next section we employ the techniques de- function of the boundary conditions can be summa-

scribed here to obtain a set of boundary condition rized in the following way:
points for which the control history is known for
the case of minimum-time reorientation of a spinning 1. Initialize y! and q1 .

missile. 2. Integrate the y and q equations backwards in
time and at each T, = nAT obtain y(Tn), where

6. An Examination of the AT is the time interval chosen to give desired

S t data-point spacing between y(T,) and y(Tn+1 ),
_Y" System and n is a positive integer. Note that the nu-

merical integration step can be a submultiple ofWe use here the idea of backwards integration and AT.

examine the system behaviour. Similar to the previ-
ous section, we conduct the following experiment. 3. Transform y(Tn) to get the boundary conditions

Four of the final state variables are zero, as given in in the original form, zl,0, X2 ,0, z3,d, and Z4,d.

Eq. (29). We assume that y5(T!).= Y5,f, where Ysf Store the thruster switching times as functions
is an arbitrary constant. Similarly, we assume an ar- of these four variables. Note that if q, > 0, then
bitrary value for the final costate vector, q(T) = q1 , T, = 0, and similarly if, q, < 0 then T > 0,
where qs,f = 0. The expression for the time-optimal where T, is the first turn-on time of the thruster.
control is given in Eq. (34). Once all the final condi-
tions on the state and costate variables are specified, Each of these steps is discussed in the following sec-
we start the integration at T" and integrate the state tions.
and costate equations backwards in time. At each
numerical integration step, we obtain a y(T') where 6.1. Initialization of yf and q,
T' = T - Tf. This trajectory connects all points
along its path to the specified final state in minimum As indicated earlier, five of the variables at T7 are
time. By varying the first four components of the fi- zero.
nal costate vector qf over 1Z4 (the fifth component is
zero as given in Eq. (37)), the entire boundary of the YI = Y2,f = Y3,f = y4,! = q5,f = 0
set of reachable states is generated starting from the
specified y!. We note here that the only non-zero The other five variables at T! are free. These must
component of the state vector is Y5., which corre- be varied over all possible values to obtain the op-
sponds to the roll angle of the missile. This angle timal control history as a function of the boundary
can take on values in the range [-ir, r]. By varying conditions. The variable ys,l corresponds to the roll
Ys,f in this range, and following the aforementioned angle and, thus, is confined to
procedure of genetating the boundary of the set of
reachable states, all the time-optimal solutions can ysf E [Ir, 7rl

be generated. During the integration, the state vec-
tor, y, and the corresponding thruster switch times The space over which qi, q ,l, q3,, and q4,f must
can be stored at discrete points in time. Hence, this be varied is a subset of the costate space. We refer

procedure gives a set of y points for which the con- to this subspace as Q.
trol history given in terms of the thruster firing times Definition: The space Q is defined as
is known.

The control scheme can then be implemented in Q {q(T): q5(T!) = 0,qi(Tf) = +1,

real-time by using the thruster switch times which qj(T!) E [-l,+1I,i,j = 1,2,3,4,j $i
are stored at discrete values of the transformed state
vector, y. However, in the actual missile the desired An algorithm to vary these variables over the range
attitude is measured with respect to the moving mis- of their possible values is given below:

6
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do Ysj = -7r, r, 6 where 6 is the desired the remainder of the fixed-time step.
spacing between values We define the following notation:
of YsI

do i=1,4 T,=ih, i = 0,1,2....
qi,f = ±1
do qj, = -1,+1,A where j 5 i and A is the =u(T,); y, y(T); q, q(T,)

desired spacing between where h is the integration step size and y' and q,
values of qj f are the numerical approximations to the exact solu-

tion y(T) and q(T). The following computational
During the implementation of our scheme to gen- procedure is used at the ith step.

erate time-optimal solutions, we observe that a con-
stant A (uniform spacing in qj, 's) does not result in 1. Integrate from T to T,+ with the RK-4 al-
a uniform span of the entire desired space of time- gorithm. In this integration u, is used for all
optimal solutions. We find that when qj,! is close to derivative evaluations over the interval.
zero, very small A is needed to span the set of de- 2. Determine if qi+l has changed sign with re-
sired time-optimal solutions. Conversely, when qj, spect to qj. If not, repeat 1 starting at T,.
is not close to zero, A need not be small. If q, has changed sign (qi,,+iqi,, < 0), it means

that q, has a zero over the interval T < T <
6.2. Integration of State and Costate T+j and the discontinuity has been crossed. In
Equations that case, proceed to step 3.

A practical issue in the implementation of the scheme 3. Using a fixed-point simplified Hermite interpola-
given in Section 6 is the choice of a numerical inte- tion between T and T+1 followed by the contin-
gration algorithm and the handling of discontinuities ued fraction zero-finder described by Howe, Ye
that occur when the control switches from on to off and Li9 , determine the zero T, of qi. Again, us-
or vice versa. ing Hermite interpolation, determine y(T,) and

The RK-4 fixed-step algorithm is used to integrate q(T,).
the state and costate equations. We utilize the fact
that analytic solutions for y and Y2 can be obtained UCan the0cntroapprom 0 t rat( from
from Eq. (11). Thus, the equations for j and 1/2 do T, to T0, to recompute y).j and qie. o
not have to be integrated numerically. The analyt-
ical solutions for yj and y2 are also used to obtain 5. Return to step 1 and repeat the steps starting
the half- and full-frame derivative estimates of the at T+1 .
remaining state and costate variables, as required in
the RK-4 integration algorithm. 6.3. Transformation Relations

There is a discontinuity in these derivatives when 6e3 e xrano R
the application of the control u starts or stops. This Between x and yr
switching time is a function of qj, the first compo- Let us consider a vector r originating at the missile
nent of the costate vector, as given by Eq. (34). If c.g. We let {rm} represent the components of the
this discontinuity occurs within an integration step, vector r in the missile body axi. frame; {rt} repre-
it can cause large errors in the numerical solution. sent the components of the same vector in the frame
To reduce these errors, the step size must be cho- T; and {r!} represent the components of the same
sen small enough to meet some integration error cri- vector in the frame F. The frame of reference T is an
terion, which can result in excessive computational arbitrary axis system whose z-axis coincides with the
time. Several papers have been written suggesting desired direction of the missile zb-axis. The frame of
special methods to circumvent this difficulty. We reference F is defined to be the missile axis sytem
choose the method proposed by Howe, Ye and Li9  at the end of the maneuver. Previously, we have de-

* for its accuracy and ease of implementation. In this fined Zsd and Z4,d to be the yaw and pitch angles
scheme, at each successive time step, q, is tested to describing the orientation of the desired direction of
see whether it has switched sign. If it has not, the the missile zb-axis with respect to the missile body
integration pr3ceeds to the next step. If switching axis system. In addition, we define Z5,d to be the
has occurred, the time of its occurrence is computed roll angle of the frame F with respect to the missile
by combining a fixed-point simplified Hermite inter- body axis system. It should be borne in mind that
polation with a continued fraction formula. Hermite Zsd is free in the formulation of the optimal control

* interpolation is also used to compute the state and problem in Section 3. Thus, we can write.
costate variable values at the crossover time. The
RK-4 algorithm is then used to integrate through {r1 } = [C (z3,d, Z4,d, Zsd)] r, } (38)
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where [C] is the direction cosine matrix and is de- IxI Po(Y)
fined in the following way: Z1.0 Y1

[C (01, 8, 0)] =2,0, Y2_

cos 10 cosa sin 10 cos 8 -sinG z3,d tan- 1  siny3 cosys+cosmsmsnCos Y3 cog Y4

Z4d -sin' (sin,3sins + cosy 3 sin 4 cosy )
sin 10Cos 0+ cooeiocoo 0+ cos 0sin~ -- :5d

cos 0 sin 0 sin 0 sin 0 sin 0 sin 0 (39)
Table 1: Transformation relations between x and y.

sin 0 sin 0+ - cos t sin 4+ cos a cos
cos 0 sin 0 cos 0 sin 1 sin 0 cos o Dividing Eq. (48) by Eq. (47), we get the follow-

We have already defined y3 = ya(T - Tf), 4 = ing expression for Z3,d without an ambiguity in the
y4 (T - T1 ), and y5 = Y5(T - 7')) to be the Euler quadrant:

angles describing the missile orientation relative to -s ( sin y3co5 +COSY 3 siny 4 sin y
an observer fixed in the frame T. Therefore, we can Z3,d = tan Ci Y3 S 4write c s/ 3 cos / 4
write(49)

{rm} = [C (?/3,1 4 , )]{rt} (40) Similarly, by equating (23 = Y723 and (33 = 1733, we
Finally, the frame Y is obtained by rotating the obtain
frame T about its z-axis. This rotation is given by
the angle 5st = ys(T) and we get cos z4,d sin zs,d = Cos ys,1 (- Cos ya sin y5+

{ rf} [=t[ ]rt (41) sin y3 sin y4 cos ys) + sin ys, co y4 cos y 5  (50)

where COS Z4,d cos Z5, = - sin Y5s, (- cos Y3 sin Y5+

1 0 0 1 sinyasiny 4 cosys)+cosYs5,coOY4cosY5 (51)
([1 = 0 cos ysi, sin Y5,1 (42) Dividing Eq. (50) by Eq. (51), we get the follow-

0 -sinYs,! cos Y5,/ ing expression for Xs,d without an ambiguity in the

The matrices [C] and [b] Pe both direction cosine quadrant:
matrices; therefore, each - .n orthogonal matrix. ( (a+b)cOsys,; +CsinY 5 ,,
Hence, the inverse of thes, - atrices is obtained by Z5d = tan-  (-a + b) sinys,! + c cos ys,! (52)
merely transposing them.

Eqs. (40) and (41) can be combined to write where

{r} = [][C(Y3 , Y 4 ,Y5 )]T {fr} (43) a = cos y3 sin y5

b = sin y3 sin /4 cos ys
Comparing Eqs. (43) and (38), we finally get = COSY4COSY5

[C (X3,d, z4,d, zsd)] = [$I] [C (Y3 , Y 4 , Y5 )IT (44) Table 1 summarizes the transformation relations be-

tween the boundary conditions, given in terms of the
We let the entries in [C(z3d, Z4d, Ysd)I be denoted state vector x, and the new state vector y at time

by (,, and the entries in [$][C(y3 ,yV4 ,y5 )]T by rj T'- 7'1.

where i and j are the row and column indices re-

spectively. Equating (13 = '713, we obtain

- sin Z4,d = sin y3 sin /5 + Cos y3 sin y4o 7. Example Trajectories
Three sets of final conditions on the state and costate

Since -7r/2 < z4,d < r/2, the above equation gives variables are given in Table 2. We only vary the final
a unique value for Z4,d. roll angle Y5,f in these three examples. Starting with

X4d = -si1n (sin y3sin1/s + cosy3sinY4 cosYs) these final values, the state and costate equations are

(46) integrated backwards in time. Figure 3 shows the

To get an expression for .r3,d, we equate (11 = r/i, plot of y3 vs. y4, where y3 and Y4 are the yaw and

and (12 = T712 and obtain pitch angles of the missile with respect to a frame
whose x-axis coincides with the desired direction of

cos Z3sd cos X4,d = COS Y3 cOS Y4 (47) the missile Zb-aXis. At each integration step the state
vector y is transformed to obtain the boundary con- 0

sin X3,d cos X4,d = - sin y3 cos ys + cos /3 sin Y4 sin ys ditions z3,d and X4,d. The total angle ct between the
(48) initial and the desired direction of the missile is given

8



0.75

________________Ex ______ xml
Example 1 Example 2 Example 3 E-__

q1] 0.25 0.25 0.25
q J, -0.50 -0.50 -0.50 0 .
q3J 0.75 0.75 0.75
q4,J 1.00 1.00 1.00

_YsI 0.00 21r/3 40r/3 o.

Table 2: Final conditions to generate example con-
trol histories.

-0.50 - _-".

-0.7 ...3. . . . .I. . .
-,0.75 --O8 -0M 0.00 02 0.50 0.75

r"

Figure 5: Path of the target in the Z3,d-X4,d plane,

where X3,d and X4,d are the yaw and pitch angles,
respectively, of the target direction with respect to

1 the moving missile body-axis frame.

0.25 - 0.10 - - - -

Iz0.00.00 4--
~o o-0-.2__ 0.04 V.- . ~ - 4 -

0.0-----....,.--- -

-o s -- -- '.-+.. -- V "
40 0.04

7. 0.02

0.0 to 4.0 6.0 8.0 10.o 1.O 14.0

Figure 3: Path of the missile Xb-axis in the y3-y4 -0-T)
plane, where y3 and y4 are the yaw and pitch angles, Figure 6: Total transverse angular velocity fl vs.
respectively, of the zb-axis with respect to the desired -(T - TI).
pointing direction.

by a = cos-(cosza,dCOSz4,d). Figure 4 shows the
angle a as a function of the dimensionless time T.
The angles z3,d and z4,d, which represent the target
yaw and pitch angles, respectively, relative to the
moving missile frame, are plotted in Figure 5.

0.8 The total transverse angular velocity Q -

0 .':I. y is plotted as a function of the dimension-
less time T in Figure 6. We start at Q2 = 0 and,
integrating backwards, obtain the time history of yi
and Y2. Figure 7 shows the trajectory of transverse
angular velocity components Y1-Y2 as the integration

.. -" proceeds.0 . .. . . . . . ., . . . . . . ..2. . . . . . . . . . .+ I. . . .... ........... ...... . .... ...

0. ..-".,.+.

0 0.4 8. Mechanization of the0.0 2.0 4.0 &.O &0 10.0 1I.0 14.0-8-0V Control Scheme

Figure 4: Total angle a vs. -(T- T1 ). The thruster switch times T,i = 1,2. n can be

obtained from the approach given in Section 6 for
the desired set of boundary conditions, where T is
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